Abstract

The programming language Haskell plays a unique, privileged role in information-flow control (IFC) research: it is able to enforce information security via libraries. Many state-of-the-art IFC libraries (e.g., LIO and HLIO) support a variety of advanced features like mutable data structures, exceptions, and concurrency, whose subtle interaction makes verification of security guarantees challenging. In this work, we focus on MAC, a statically-enforced IFC library for Haskell. In MAC, like other IFC libraries, computations have a well-established algebraic structure for computations (i.e., monads) responsible to manipulate labeled values—values coming from an abstract data type which associates a sensitivity label to a piece of information. In this work, we enrich labeled values with a functor structure and provide an applicative functor operator which encourages a more functional programming style and simplifies code. Furthermore, we present a full-fledged, mechanically-verified model of MAC. Specifically, we show progress-insensitive noninterference for our sequential calculus and pinpoint sufficient requirements on the scheduler to prove progress-sensitive noninterference for our concurrent calculus. For that, we study the security guarantees of MAC using term erasure, a proof technique that ensures that the same public output should be produced if secrets are erased before or after program execution. As another contribution, we extend term erasure with two-steps erasure, a flexible novel technique that greatly simplifies the noninterference proof and helps to prove many advanced features of MAC.

Keywords: Information Flow Control, Non Interference, Functional Programming, Haskell, Agda.
1. Introduction

Nowadays, many applications (apps) manipulate users’ private data. Such apps could have been written by anyone and users who wish to benefit from their functionality are forced to grant them access to their data—something that most users will do without a second thought (Meurer and Wismller, 2012). Once apps collect users’ information, there are no guarantees about how they handle it, thus leaving room for data theft and data breach by malicious apps. The key to guaranteeing security without sacrificing functionality is not granting or denying access to sensitive data, but rather ensuring that information flows only into appropriate places.

Language-based Information-Flow Control (IFC) (Sabelfeld and Myers, 2003) is a promising approach to enforcing information security in software. A traditional IFC enforcement scrutinizes how data of different sensitivity levels (e.g., public or private) flows within a program, detects when an unsafe flow of information occurs and takes action to suppress the leakage. To do that, most IFC tools require the design of new languages, compilers, interpreters, or modifications to the runtime, e.g., (Myers, 1999; Pottier and Simonet, 2002; Roy et al., 2009; Broberg et al., 2013). Nonetheless, in the functional programming language Haskell, the strict separation between side-effect free and side-effectful code enables lightweight security enforcements. Specifically, it is possible to build a secure programming language atop Haskell, as an embedded domain-specific language that gets distributed and used as a Haskell library (Li and Zdancewic, 2006). Many of the state-of-the-art Haskell security libraries, namely LIO (Stefan et al., 2011), HLIO (Buiras et al., 2015), and MAC (Russo, 2015), bring ideas from Mandatory Access Control (Bell and La Padula, 1976) into a language-based setting. These libraries promote a secure-by-construction programming model: any program written against their API does not leak secrets. This model is attractive, because it protects not only against benign code that leaks accidentally, e.g., due to a software bug, but also against a malicious program designed to do so. Every computation in such libraries has a current label which is used to (i) approximate the sensitivity level of all the data in scope and (ii) restrict subsequent side-effects which might compromise security. IFC uses labels to model the sensitivity of data, which are then organized in a security lattice (Denning and Denning, 1977) specifying the allowed flows of information, i.e., \(\ell_1 \sqsubseteq \ell_2 \) means that data with label \(\ell_1 \) can flow into entities labeled with \(\ell_2 \). Although these libraries are parameterized on the security lattice, for simplicity we focus on the classic two-point lattice with labels \(H \) and \(L \) to respectively denote secret (high) and public (low) data, and where \(H \nsubseteq L \) is the only disallowed flow. Figure 1 shows a graphical representation of a public computation in these libraries, i.e., a computation with current label \(L \). The computation can read or write data in scope, which is considered

1From now on, we simply use the term libraries when referring to LIO, HLIO, and MAC.
public (e.g., average temperature of 17°C in the Swedish summer), and it can write to public (L-) or secret (H-) sinks. By contrast, a secret computation, i.e., a computation with current label H, can also read and write data in its scope, which is considered sensitive, but in order to prevent information leaks it can only write to sensitive/secret sinks. Structuring computations in this manner ensures that sensitive data does not flow into public entities, a policy known as noninterference (Goguen and Meseguer, 1982).

While secure, programming in this model can be overly restrictive for users who want to manipulate differently-labeled values.

To address this shortcoming, libraries introduce the notion of a labeled value as an abstract data type which protects values with explicit labels, in addition to the current label. Figure 2 shows a public computation with access to both public and sensitive pieces of information, such as a password (pwd). Public computations can freely manipulate sensitive labeled values provided that they are treated as black boxes, i.e., they can be stored, retrieved, and passed around as long as its content is not inspected. Libraries LIO and HLIO even allow public computations to inspect the contents of sensitive labeled values, raising the current label to H to keep track of the fact that a secret is in scope—this variant is known as a floating-label system.

Reading sensitive data usually amounts to “tainting” the entire context or ensuring the context is as sensitive as the data being observed. As a result, the system is susceptible to an issue known as label creep: reading too many secrets may cause the current label to be so high in the lattice that the computation can no longer perform any useful side effects. To address this problem, libraries provide a primitive which enables public computations to spawn sub-computations that access sensitive labeled values without tainting the parent. In a sequential setting, such sub-computations are implemented by special function calls. In the presence of concurrency, however, they must be executed in a different thread to avoid compromising security through internal timing and termination covert channels (Stefan et al., 2012a).

Practical programs need to manipulate sensitive labeled values by transforming them. It is quite common for these operations to be naturally free of I/O or other side effects, e.g., arithmetical or algebraic operations, especially in applications like image processing, cryptography, or data aggregation for statistical purposes. Writing such functions, known as pure functions, is the bread and butter of functional programming style, and is known to improve programmer productivity, encourage code reuse, and reduce the likelihood of bugs (Hughes, 1984). Nevertheless, the programming model involving sub-computations that manipulate secrets forces an imperative style, whereby computations must be structured into separate compartments that must communicate explicitly. While side-effecting instructions have an underlying algebraic structure, called monad (Moggi, 1991), research literature has neglected studying the algebraic structure of labeled values and their consequences for the programming model. To empower programmers with the simpler, functional style, we propose additional operations that allow pure functions to securely manipulate labeled values, specifically by
means of a structure similar to applicative functors (Mcbride and Paterson 2008). In particular, this structure is useful in concurrent settings where it is no longer necessary to spawn threads to manipulate sensitive data, thus making the code less imperative (i.e., side-effect free).

Additionally, practical programs often aggregate information from heterogeneous sources. For that, programs need to upgrade labeled values to an upper bound of the labels being involved before data can be combined. In previous incarnations of the libraries, such relabelings require to spawn threads just for that purpose. As before, the reason for that is libraries decoupling every computation which manipulate sensitive data—even those for simply relabeling—so that the internal timing and termination covert channels imposed no threats. In this light, we introduce a primitive to securely relabel labeled values, which can be applied irrespective of the computation’s current label and does not require spawning threads.

We provide a mechanized security proof for the security library MAC and claim our results also apply to LIO and HLIO. MAC has fewer lines of code and leverages types to enforce confidentiality, thus making it ideal to model its semantics in a dependently-typed language like Agda. The contributions of this paper are:

1. We develop the first exhaustive full-fledged formalization of MAC, a state-of-the-art library for Information-Flow Control, in a call-by-need λ-calculus and prove progress-insensitive noninterference (PINI) for the sequential calculus.
2. We enrich the calculus with scheduler-parametric concurrency and prove progress-sensitive noninterference (PSNI) (Askarov et al. 2008) for a wide-range of deterministic schedulers, by formally identifying sufficient requirements on the scheduler to ensure PSNI—a novel aspect if compared with previous work (Stefan et al. 2012a; Heule et al. 2015). We leverage on the generality of our result and prove that MAC is secure by instantiating our PSNI theorem with a round-robin scheduler, i.e., the scheduler used by GHC’s runtime system.
3. We corroborate our results with an extensive mechanized proof developed in the Agda proof assistant that counts more than 4000 lines of code. The mechanization has provided us with stimulating insights and pinpointed problems in proofs of similar works.
4. We improve and simplify the term-erasure proof technique by proposing a novel flexible technique called two-steps erasure, which we utilize systematically to prove that many advanced features are secure, especially those that change the security level of other terms and detect exceptions.
5. We introduce a functor structure, a relabeling primitive and an applicative operator that give flexibility to programmers, by upgrading labeled values and conveniently aggregating heterogeneously labeled data.
6. We have released a prototype of our ideas in the MAC library.

Highlights. This work builds on our previous papers “Flexible Manipulation of Labeled Values for Information-Flow Control Libraries” (Vassena et al. 2016) and “On...
Formalizing Information-Flow Control Libraries” (Vassena and Russo 2016), which we have blended and significantly rewritten and corrected in a few technical inaccuracies. We have integrated these works with several examples and shaped them into a uniform, coherent and comprehensive story of this line of work. We summarize the novel contributions of this article as follows:

- Uniform, coherent and comprehensive account of a formal model of MAC;
- Integration of examples in the description of the features of the library;
- Fixed several technical inaccuracies in the semantics of the calculus;
- Simplification and full account of the scheduler-parametric PSNI proof.

In the following, we point out the technical differences between this article and the conference version in footnotes.

This paper is organized as follows. Section 2 gives an overview of MAC. Section 3 formalizes the core of MAC in a simply-typed call-by-need lambda-calculus. Section 4 presents a secure primitive that regulates the interaction between computations at different security levels. Sections 5 and 6 extend the calculus with other advanced practical features, namely exceptions and mutable references. Section 7 proves that the sequential calculus satisfies progress-insensitive noninterference (PINI). Section 8 extends the calculus with concurrency and Section 9 presents functor, applicative, and relabeling operations. Section 10 gives the security guarantee of the concurrent calculus, which satisfies progress-sensitive noninterference (PSNI). Section 11 gives related work and Section 12 concludes.

2. Overview

In MAC, each label is represented as an abstract data type. Figure 3 shows the core part of MAC’s API. Abstract data type Labeled ℓ a classifies data of type a with a security label ℓ. For instance, pwd :: Labeled H String is a sensitive string, while rating :: Labeled L Int is a public integer. (Symbol :: is used to describe the type of terms in Haskell.) Abstract data type MAC ℓ a denotes a (possibly) side-effectful secure computation which handles information at sensitivity level ℓ and yields a value of type a as a result. A MAC ℓ a computation enjoys a monadic structure, i.e., it is built using the fundamental operations return :: a → MAC ℓ a and (>>=) :: MAC ℓ a →
(a → MAC ℓ b) → MAC ℓ b (read as “bind”). The operation return x produces a computation that returns the value denoted by x and produces no side-effects. The function (≫=) is used to sequence computations and their corresponding side-effects. Specifically, \(m \gg= f \) takes a computation \(m \) and function \(f \) which will be applied to the result produced by running \(m \) and yields the resulting computation. We sometimes use Haskell’s do-notation to write such monadic computations. For example, the program \(m \gg= \lambda x \to \text{return} (x + 1) \), which adds 1 to the value produced by \(m \), can be written as shown in Figure 4.

![Figure 4: do-notation](image)

2.1. Secure flows of information

Generally speaking, side-effects in a MAC ℓ a computation can be seen as actions which either read or write data. Such actions, however, need to be conceived in a manner that respects the sensitivity of the computations’ results as well as the sensitivity of sources and sinks of information modeled as labeled values. The functions label and unlabel allow MAC ℓ a computations to securely interact with labeled values. To help readers, we indicate the relationship between type variables in their subindexes, i.e., we use \(\ell_L \) and \(\ell_H \) to attest that \(\ell_L \sqsubseteq \ell_H \). If a MAC ℓ_L computation writes data into a sink, the computation should have at most the sensitivity of the sink itself. This restriction, known as no write-down (Bell and La Padula, 1976), respects the sensitivity of the data sink, e.g., the sink never receives data more sensitive than its label. In the case of function label, it creates a fresh labeled value, which from the security point of view can be seen as allocating a fresh location in memory and immediately writing a value into it—thus, it applies the no write-down principle. In the type signature of label, what appears on the left-hand side of the symbol ⇒ are type constraints. They represent properties that must be statically fulfilled about the types appearing on the right-hand side of ⇒. Type constraint \(\ell_L \sqsubseteq \ell_H \) ensures that when calling label \(x \) (for some \(x \) in scope), the computation creates a labeled value only if \(\ell_L \), i.e. the current label of the computation, is no more confidential than \(\ell_H \), i.e. the sensitivity of the created labeled value. In contrast, a computation MAC ℓ_H a is only allowed to read labeled values at most as sensitive as \(\ell_H \)—observe the type constraint \(\ell_L \sqsubseteq \ell_H \) in the type signature of unlabel. This restriction, known as no read-up (Bell and La Padula, 1976), protects the confidentiality degree of the result produced by MAC ℓ_H a, i.e. the result might only involve data \(\ell_L \), which is, at most, as sensitive as \(\ell_H \).

We remark that MAC is an embedded domain specific language (EDSL), implemented as a Haskell library of around 200 lines of code and programs written in MAC are secure-by-construction. What makes it possible to provide strong security guarantees via a library is the fact that Haskell type-system enforces a strict separation between side-effect free code, which is guaranteed not to perform side effects, and side-effectful code, where side-effects may occur. Specifically side-effects, i.e., input-output operations, can only occur in monadic computations of type IO a. Crucially pure computations are inherently secure, while IO computations are potentially leaky.

In the functional programming community, they are also known as pure and impure code respectively.
In MAC, a secure computation of type $MAC \ell \ a$ is internally represented as a wrapper around an $IO \ a$ computation, that is used to implement side-effectful features, such as references and concurrency. MAC provides security-by-construction because impure operations, i.e., those of type IO, can only be constructed using MAC label-annotated API, which accepts only those that are statically deemed secure. Function run^{TCB} extracts the underlying $IO \ a$ computation from a secure computation of type $MAC \ell \ a$. Thanks to the secure-by-construction design, the IO computation so obtained is secure and can be executed directly, without the need of additional protection mechanism, such as monitors. Note that the function run^{TCB} is part of the Trusted Computing Base (TCB), i.e., it is available only to trusted code. In what follows, we describe an example which illustrates MAC’s programming model, particularly the use of label, unlabel.

Example. The most common use of label is to classify data to be protected. As an example, consider the Haskell program listed in Figure 5 which prompts the user for a password through the terminal and then passes it to a routine to check if the password is listed on dictionaries of commonly used passwords. Observe that the program performs input-output operations: $\text{putStrLn} :: \text{String} \to IO ()$ prints to standard output and $\text{getLine} :: IO \text{String}$ reads from standard input. Clearly the content of variable pwd should be handled with care by $\text{isWeak} :: \text{String} \to IO \text{Bool}$. In particular a computation of type $IO \text{Bool}$ can also perform arbitrary output operations and potentially leak the password. One way to protect pwd is by writing all password-related operations, like isWeak, within MAC, where pwd is marked as sensitive data. Adjusting the type of isWeak appropriately, MAC prevents intentional or accidental leakage of the password. Several secure designs are possible, depending on how isWeak provides its functionality. For example a secure interface could be $\text{isWeak} :: \text{Labeled H String} \to MAC L (\text{Labeled H Bool})$, where the outermost computation ($MAC L$) accounts for reading public data, e.g., fetching online dictionaries of common passwords, while the labeled result (Labeled H Bool), protects the sensitivity of this piece of information about the password, namely if it is weak or not. The type $\text{isWeak} :: \text{Labeled H String} \to MAC H \text{Bool}$ is also secure and additionally allows to read from secret channels, e.g., file /etc/shadow, to check that the password is not reused. Figure 6 shows the modifications to the code needed to use a secure password strength checker. Observe how label is used to mark pwd as sensitive by wrapping it inside a labeled expression of type Labeled H String. After that, the labeled password is passed to function isWeak by bind ($\gg=$), function run^{TCB} executes the whole computation, whose labeled result is then pattern matched with Labeled^{TCB}.

<table>
<thead>
<tr>
<th>p :: IO Bool</th>
</tr>
</thead>
<tbody>
<tr>
<td>p = do</td>
</tr>
<tr>
<td>putStrLn "Choose a password:"</td>
</tr>
<tr>
<td>pwd ← getLine</td>
</tr>
<tr>
<td>return (isWeak pwd)</td>
</tr>
</tbody>
</table>

Figure 5: The password is exposed in isWeak.
exposing the boolean value, that is finally returned.

2.2. Implicit flows

The interaction between the current label of a computation and the no read-up and no write-down security policies makes implicit flow ill-typed. Consider for instance, the ill-typed program in Figure 7 that attempts to leak the value of the secret boolean in a public boolean. Unlike other IFC systems, the code cannot branch on secret directly, because it is explicitly labeled, i.e., it has type Labeled H Bool, instead of Bool. In order to branch on sensitive data, the program needs first to unlabel it, thus incurring in the no read-up restriction that requires the computation to be sensitive as well, that is the program must have type MAC H a (for some type a). The only primitive that produces labeled data is label, which according to the no write-down restriction, prevents a sensitive computation from creating a public labeled value. Regardless of the branch taken, but for that reason, i.e., trying to label a piece of data with L in a computation labeled with H, the program in Figure 7 is ill-typed.

Features Overview. Modern programming languages provide many abstractions that simplify the development of complex software. In the following, we extend MAC with additional primitives that make software development within MAC practical, without sacrificing security. The list of programming features securely supported in MAC include exception handling (Section 5), references (Section 6), concurrency (Section 8), functors 9 and synchronization primitives (Appendix B).
3. The Core Calculus

This section formalizes MAC as a simply typed call-by-name λ-calculus extended with unit and boolean values and security primitives.

3.1. Pure Calculus

Figure 8 shows the formal syntax of the pure calculus underlying MAC, where meta variables \(\tau \), \(v \) and \(t \) denote respectively types, values, and terms. The typing judgment \(\Gamma \vdash t : \tau \) denotes that term \(t \) has type \(\tau \) assuming typing environment \(\Gamma \). The typing rules of the pure calculus are standard and therefore omitted. The small-step semantics of the the calculus is represented by the relation \(t_1 \leadsto t_2 \), which denotes that term \(t_1 \) reduces to \(t_2 \). Rule [BETA] indicates that the calculus has call-by-name semantics, because the argument of a function, evaluated to weak-head normal form by rule [APP], is not evaluated upon function application, but rather substituted in the body—we write \(t_1 \ [x \ / \ t_2] \) for capture-avoiding substitution[6]. Rule [IF1] evaluates the conditional of an if-then-else expression and rules [IF2,IF3] take the appropriate branch.

3.2. Core of MAC

We now extend this standard calculus with the security primitives of MAC as shown in Figure 9. Meta variable \(\ell \) ranges over labels, which are assumed to form a lattice \((\mathcal{L}, \sqsubseteq) \). Labels are types in MAC despite we place them in a different

[6] In the machine-checked proofs all variables are De Bruijn indexes.
syntactic category named ℓ—this decision is made merely for clarity of exposition. The new type $\text{Labeled } \ell \tau$ represents a (possibly side-effect free) resource, which annotates with the security level ℓ a value $t :: \tau$ wrapped in Labeled . For example, $\text{Labeled } 42 :: \text{Labeled } \text{L Int}$ is a public integer. In the following, we introduce further forms of labeled resources, in particular mutable references in Section 6 and synchronization variables in Appendix B. The actual MAC implementation handles more labeled resources and provides a uniform implementation for them (Russo, 2015). The constructor Labeled is not available to the user, who can only use label and unlabel to create and inspect labeled resources, respectively.

A configuration $\langle \Sigma, t \rangle$ consists of a store Σ and a term t describing a computation of type MAC $\ell \tau$ and represents a secure computation at sensitivity level ℓ, which yields a value of type τ as result. For the moment, we ignore the store in the configuration (explained in Section 6). In order to enforce the security invariants, functions label and unlabel are used to create and inspect labeled resources, respectively.

In our conference version (Vassena and Russo, 2016; Vassena et al., 2016), we follow the original MAC paper (Russo, 2015) and represent all labeled resources using the same labeled data type $\text{Res } t :: \text{Res } \ell \tau$, where $t :: \tau$ determines the kind of resource. For example $\text{Res } \text{(Id } 42) :: \text{Res } \ell \text{(Id } \text{Int})$ is a term representing a public integer. Here, for clarity of exposition, we use separate data types for each labeled resource. This design choice does not affect our results.

Figure 9: Core of MAC.

<table>
<thead>
<tr>
<th>Label: ℓ</th>
<th>Store: Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types: $\tau ::= \cdots</td>
<td>\text{MAC } \ell \tau</td>
</tr>
<tr>
<td>Configuration: $c ::= \langle \Sigma, t \rangle$</td>
<td></td>
</tr>
<tr>
<td>Values: $v ::= \cdots</td>
<td>\text{return } t</td>
</tr>
<tr>
<td>Terms: $t ::= \cdots</td>
<td>t_1 \gg t_2</td>
</tr>
</tbody>
</table>

(LIFT) $t \rightsquigarrow t'$
$(\Sigma, t) \rightarrow (\Sigma, t')$

(BIND$_1$)
$(\Sigma, t_1 \gg t_2) \rightarrow (\Sigma', t'_1 \gg t_2)$

(BIND$_2$)
$(\Sigma, \text{return } t_1 \gg t_2) \rightarrow (\Sigma, t_1)$

(LABEL)
$(\Sigma, \text{label } t) \rightarrow (\Sigma, \text{return } (\text{Labeled } t))$

(LABEL)
$(\Sigma, \text{unlabel } (\text{Labeled } t)) \rightarrow (\Sigma, \text{return } t)$

(UNILABEL$_1$)
$t \rightsquigarrow t'$
$(\Sigma, \text{unlabel } t) \rightarrow (\Sigma, \text{unlabel } t')$

(UNILABEL$_2$)
$(\Sigma, \text{unlabel } (\text{Labeled } t)) \rightarrow (\Sigma, \text{return } t)$
and unlabel live in the MAC monad and the typing rules in Figure 10 ensure that the label of the resource is compatible with the security level of the current computation, as explained in the previous section. We explain the relation between those typing rules and their corresponding type signatures given as Haskell API in Figure 3 as follows. The typing rules in Figure 10 are type scheme rules, i.e., there is such a judgment for every label \(\ell_L \) and \(\ell_H \in \mathcal{L} \), such that \(\ell_L \sqsubseteq \ell_H \), where labels come from either type signatures or explicit type annotations in programs, as we showed in the previous section. The type constraints in the API, i.e., what appears before the symbol \(\Rightarrow \), is placed as a premise of the corresponding typing rule. We remark that type constrains are built using type classes, a well-established feature of Haskell type system, therefore we do not discuss them any further (Wadler and Blott, 1989). Besides those primitives, computations are created using the standard monad operations return and \(\gg \). The primitive return lifts a term in the monad at security level \(\ell \) by means of typing rule [RETURN]. Unlike the Dependency Core Calculus (DCC) (Abadi et al., 1999), secure computations at different security levels do not mix in MAC: the typing rule [BIND] prevents that from happening—note the same label \(\ell \) is expected both in the types of \(t_1 \) and \(t_2 \). Just like rules [LABEL, UNLABEL], the typing rules [RETURN, BIND] are type scheme rules, i.e., there is such a rule for each label \(\ell \in \mathcal{L} \). For easy exposition, in the following we give the type of MAC’s constructs as Haskell APIs.

We explicitly distinguish pure-term evaluation from top-level monadic-term evaluation, similarly to (Stefan et al., 2012b). The extended semantics is represented as the relation \(c_1 \rightarrow c_2 \), which extends \(\leftarrow \) via [LIFT]. The semantics rules in Figure 9 are fairly straight-forward and follow the pattern seen in the pure semantics, where some context-rules, e.g. [BIND1, UNLABEL1] reduce a redex subterm, and then the interesting rule fires, e.g. [BIND2, UNLABEL2]. In particular rule [BIND1] executes the computation on the left of the bind and rule [BIND2] extracts the result of the computation and feeds it to the right-side argument of (\(\gg \)). Rule [UNLABEL] evaluates the ar-

\[
\begin{align*}
\text{(LABEL)} & \quad \ell_L \sqsubseteq \ell_H \quad \Gamma \vdash t : \tau \\
\text{(UNLABEL)} & \quad \ell_L \sqsubseteq \ell_H \quad \Gamma \vdash t: Labeled \ell_L \tau \\
\text{(BIND)} & \quad \Gamma \vdash t_1 (MAC \ell \tau_1) \quad \Gamma \vdash t_2 : (\tau_1 \rightarrow MAC \ell \tau_2) \\
& \quad \Gamma \vdash t_1 \gg t_2 : MAC \ell \tau_2 \\
\text{(RETURN)} & \quad \Gamma \vdash t : \tau \\
& \quad \Gamma \vdash \text{return } t : MAC \ell \tau \\
\end{align*}
\]

Figure 10: Typing rules for the core of MAC.
gument to labeled expression and rule \([\text{UNLABEL}_2]\) returns its content. Rule \([\text{LABEL}]\) creates a labeled expression by wrapping the argument in \([\text{Labeled}]\) and returns it in the security monad. It is worth noting that thanks to the static nature of \([\text{MAC}]\), no run-time checks are needed to prevent insecure flows of information in these rules.

4. Label Creep

Let us continue the password example from the introduction. After checking that the password is strong enough, the program replaces the old password with the new one by updating file /etc/shadow with the new hashed password, using primitive \([\text{passwd}^{\text{MAC}}]::\text{Labeled H String} \rightarrow \text{MAC H}())\)—note that the label of the computation is H, in order to unlabel the password and hash it. (We treat password hashes as confidential data as well, because they could enable offline dictionary attacks otherwise.) The program should also inform the user that the password is being saved by printing on the screen a message. We consider printing on the screen as a public write operation, i.e., \([\text{putStrLn}^{\text{MAC}}]::\text{String} \rightarrow \text{MAC L}())\). Figure 11 shows the code of the discussed routine. Observe that \([\text{putStrLn}^{\text{MAC}}]\) "Saving new password"\) and \([\text{passwd}^{\text{MAC}}]::\text{MAC H}())\) belong to different \([\text{MAC}]\) computations. Therefore, both operations cannot coexist together, otherwise secret data, e.g., the password, could be unlabeled and then leaked on a public channel, e.g., standard output. Specifically the program in Figure 13 is rejected as ill-typed. Programs that handle data and channels with heterogeneous labels necessarily involve nested \([\text{MAC}] \ell\) a computations in its return type. In this case, the type of \([\text{savePwd} lpwd :: \text{MAC L} (\text{MAC H}())]\) indicates that it is a public computations, which prints on the screen, and that produces as value a sensitive computation \([\text{MAC H} \text{Int}]\), which lastly writes to the sensitive file. Obviously having to nest computations complicates the programming model.
of MAC and hinders its applicability\footnote{Remember that Haskell employs lazy evaluation, therefore the inner computations is not automatically evaluated, but needs to be explicitly executed. Only trusted code, using \texttt{runTCB} can force evaluation of MAC computations.} For example, \texttt{savePwd lpwd} requires to run the public computation to completion first, and then execute the resulting sensitive computation. We recognize this pattern of returning nested computations as a static version of a problem known in dynamic systems as \textit{label creep} \cite{Sabelfeld2003, Buiras2014}—which occurs when the context gets tainted to the point that no useful operations are allowed anymore. In a sequential setting, MAC provides the primitive \texttt{join} which alleviates this problem by safely integrating more sensitive computations into less sensitive ones.

4.1. Primitive join

Figure \ref{fig:joinSig} shows the type signature of \texttt{join}. Intuitively, function \texttt{join} runs the computation of type $MAC\, t_1\, \tau$ and wraps the result into a labeled expression to protect its sensitivity. As we will show in Section 7.5, programs written using the monadic API, \texttt{label}, \texttt{unlabel}, and \texttt{join} satisfy \textit{progress-insensitive noninterference} (PINI), where leaks due to non-termination of programs are ignored. This design decision is similar to that taken by mainstream IFC compilers \cite[e.g.,][]{Myers2001, Simonet2003, Hedin2014}, where the most effective manner to exploit termination takes exponential time in the size (of bits) of the secret \cite{Askarov2008}.

In the semantics, Figure \ref{fig:join} extends terms with the new primitive \texttt{join} t. Rule $[\text{JOIN}]$ formalizes the semantics of \texttt{join} using big-step semantics—similar to other work \cite{Stefan2011, Russo2015}, we restrict ourselves to terminating computations. We write $\langle \Sigma, t \rangle \Downarrow \langle \Sigma', v \rangle$ if and only if v is a value and $\langle \Sigma, t \rangle \rightarrow^* \langle \Sigma', v \rangle$, where relation \rightarrow^* denotes the reflexive transitive closure of \rightarrow. Rule $[\text{JOIN}]$ executes the secure computation $t \Downarrow \text{return } t'$ and wraps the result t in \textit{Labeled} to protect its sensitivity\footnote{Not to be confused with the monadic \texttt{join :: Monad m => m (m a) \rightarrow m a}.}.

![Figure 14: Calculus with join.](image-url)
savePwd :: Labeled H String → MAC L ()
savePwd lpwd = do putStrLn $^MAC "Saving new password"
 join (passwd^MAC pwd)
 putStrLn $^MAC "Password saved"

Figure 15: Example revisited with join.

throw :: χ → MAC ℓ τ
catch :: MAC ℓ τ → (χ → MAC ℓ τ) → MAC ℓ τ

Figure 16: API for exceptions.

Revisited Example. By replacing return with join, we can simplify the program savePwd from the previous section: compare the two versions of the program in Figure 11 (using return) and in Figure 15 (using join). In Figure 15 the return type of savePwd does not involve nested computations, therefore the execution of the sensitive computation is not suspended, but rather follows directly after the public print statement.

5. Exception handling

Exception handling is a common programming language mechanism used to signal some anomalous condition and stop the execution of a program. It is sometimes possible to recover from such exceptional circumstances and resume execution afterwards. For instance, consider again the program savePwd in Figure 15. If primitive passwd^MAC fails due to some IO exception, e.g., file etc/shadow has already been opened or has not been found, the whole program crashes. Not supporting exceptions in the context of input-output operations, is not only impeding our programming model, but it is also insecure. In fact, exceptions change the control flow of a program, and an uncaught exception can propagate throughout a program and eventually crash it, potentially suppressing public events. For example, if passwd^MAC throws an exception, the program aborts before printing "Password saved" on the screen. Observe that, such behavior constitutes a leak, because the failure comes from a sensitive context, i.e., passwd^MAC, and therefore can depend on the value of the secret, i.e., the password. In this section, we incorporate exception handling primitives in MAC to remedy this situation, see Figure 16. Intuitively, catch t_1 t_2 runs the computation t_1 and recovers from a failure by passing the exception to the exception handler t_2. Section 5.2 discusses some subtleties between exception handling primitives and join, which may propagate exceptions from sensitive contexts to less sensitive ones, if neglected.

5.1. Calculus

For simplicity, we consider only one exception ξ :: χ, where χ denotes an exception type. In the calculus, we extend terms with ξ, throw t, and catch t_1 t_2—see Figure 17.
Types: \(\tau ::= \cdots | \chi \)

Values: \(v ::= \cdots | \xi \text{ | throw } t \)

Terms: \(t ::= \cdots | \text{catch } t_1 t_2 \)

- \((\text{BIND}_\chi)\)
 \[\langle \Sigma, \text{throw } t_1 \gg t_2 \rangle \rightarrow \langle \Sigma, \text{throw } t_1 \rangle \]

- \((\text{CATCH}_1)\)
 \[\langle \Sigma, t_1 \rangle \rightarrow \langle \Sigma', t_1' \rangle \]
 \[\langle \Sigma, \text{catch } t_1 t_2 \rangle \rightarrow \langle \Sigma', \text{catch } t_1' t_2 \rangle \]

- \((\text{CATCH}_2)\)
 \[\langle \Sigma, \text{catch (return } t_1 \rangle t_2 \rightarrow \langle \Sigma, \text{return } t_1 \rangle \]

- \((\text{CATCH}_3)\)
 \[\langle \Sigma, \text{catch (throw } t_1 \rangle t_2 \rightarrow \langle \Sigma, t_2 t_1 \rangle \]

Figure 17: Exception handling primitives.

Term \(\text{throw } t\) aborts the current MAC computation with exception \(t\), see rule \([\text{BIND}_\chi]\).
Term \(\text{catch } t_1 t_2\) evaluates computation \(t_1\) via rule \([\text{CATCH}_1]\), and either it returns the result, if the computation succeeds, i.e., rule \([\text{CATCH}_2]\), or it attempts to recover a failure by running exception handler \(t_2\), if the computation throws an exception, i.e., rule \([\text{CATCH}_3]\).

5.2. Join and exceptions

The interplay between exceptions and join is delicate and security might be at stake if these two features were naively combined (Stefan et al., 2012b; Hritcu et al., 2013). Observe that type signatures in Figure 16 hint that exceptions can be thrown and caught among computations with the same label—a design decision which does not break security guarantees. Nevertheless, information can be leaked if exceptions thrown in sensitive computations are propagated to less sensitive ones. From now on, we refer to exceptions raised in a sensitive MAC computation as sensitive exceptions. In fact, sensitive exceptions can affect the control-flow of less sensitive computations and thus suppressing observable events, giving place to an implicit flow\(^{11}\). In our calculus, join is the only primitive that combines computations with different labels and thus is potentially vulnerable to this attack. In order to close leaks via exceptions, MAC modifies the semantics of join to mask exceptions, preventing them to propagate to less sensitive computations—this solution is similar to previous work (Stefan et al., 2012b; Hritcu et al., 2013).

\(^{11}\)We refer interested readers to (Russo, 2015) for further details about this attack.
Figure 18: Secure interaction between \textit{join} and exceptions.

Figure 18 implements this countermeasure. Firstly it adds a new internal constructor \textit{Labeled}_\chi t denoting a labeled value (of type \textit{Labeled} \ell τ) which contains inside the exception (t :: \chi). Rule [\textit{JOIN}_\chi] shows the semantics for \textit{join} t when exceptions are triggered: \textit{exceptions are not propagated further but rather returned inside a labeled expression}. Under this programming model, it is necessary to inspect the return value of \textit{join} to determine if the computation terminated abnormally. The attacker must then\textit{unlabel} the result to observe the exception, see rule [\textit{UNLABEL}_\chi]. Observe that, since this operation is subject to \textit{no read-up}, sensitive exceptions are not observable from less sensitive computations. As a consequence of this programming model, only sensitive computations can handle sensitive exceptions. Consider again the program \textit{savePwd} in the example from Figure 15. The program prints ”Password Saved” even though \textit{passwdMAC} might have actually failed: it would be insecure to do otherwise! The only way to observe and recover from a failure of \textit{passwdMAC}, without compromising security, is to explicitly surround it with a \textit{catch} block, i.e., \textit{catch (passwdMAC pwd) handler}, and lift that computation with \textit{join}.

6. References

Mutable references are an imperative feature often needed to boost the performance of algorithms. Following the password example from the previous sections, we might want to reject weak passwords that are vulnerable to dictionary attacks. To do that, in Figure 19 function \textit{fetchDict} fetches a list of words from a dictionary available in the system—we consider the content of a dictionary to be public information therefore the computation has security level L. Depending on the local system language, we can tweak the function to pick an appropriate dictionary, for example \textit{fetchDict ”en”} fetches English words from dictionary ”usr/share/dict-en”. A password-strength checker application could test a password against multiple dictionaries, which would require to call \textit{fetchDict} multiple times. Since dictionaries are seldom changed, it is wasteful to fetch the same dictionary multiple times, therefore, using references, we implement a simple caching mechanism that avoids the overhead.
fetchDict :: String → MAC L [String]
fetchDict lang = readFile "usr/share/dict" ++ "-" ++ lang

fetchCacheDict : Ref L (Map String [String]) → String → MAC L [String]
fetchCacheDict r lang = do
dicts ← read r
case lookup lang dicts of
 Just dict → return dict
Nothing → do
dict ← fetchDict lang
 write (insert dict dicts) r
 return dict

Figure 19: fetchCacheDict is a cached version of fetchDict.

data Ref ℓ τ
 new :: ℓ_L ⊑ ℓ_H ⇒ τ → MAC ℓ_L (Ref ℓ_H τ)
 read :: ℓ_L ⊑ ℓ_H ⇒ Ref ℓ_L τ → MAC ℓ_H τ
 write :: ℓ_L ⊑ ℓ_H ⇒ τ → Ref ℓ_H τ → MAC ℓ_L ()

Figure 20: API for references.

Function fetchCacheDict takes as an extra argument a reference to a table of cached dictionaries, i.e., Ref L (Map String [String]). When the language lang dictionary is needed, the function reads the cached table (dicts) from the reference (read r) and checks if it has already been fetched (lookup lang dicts). If it is a hit (case Just dict), the dictionary is returned directly without the need of any IO operation. Otherwise (case Nothing), the dictionary is fetched with fetchDict, the result cached (write (insert dict dicts) r) and returned.

6.1. Calculus

Figure 21 extends the calculus with mutable references, another feature available in MAC. Memory is compartmentalized into isolated labeled segments\(^\text{12}\) one for each label of the lattice, and accessed exclusively through the store Σ. A memory in the category Memory ℓ contains terms at security level ℓ. We use the standard list interface [], t : t_s and t_s[n] for the empty list, the insertion of a term into an existing list and accessing the nth-element, respectively. We write Σ(ℓ)[n] to retrieve the nth-cell in the ℓ-memory. The notation Σ(ℓ)[n] := t denotes the store obtained by performing

\(^{12}\)A split memory model simplifies the proofs because allocation in one segment does not affect allocation in another. We argue why this model is reasonable and discuss alternatives in Section\(^7\).
| Store: $\Sigma ::= (\ell : \text{Label}) \rightarrow \text{Memory } \ell$ |
|---|---|
| Memory ℓ $t_\ell ::= [] \mid t : t_\ell$ |
| Addresses: $n ::= 0 \mid 1 \mid 2 \mid \cdots$ |
| Types: $\tau ::= \cdots \mid \text{Ref } \ell \tau$ |
| Values: $v ::= \cdots \mid \text{Ref } n$ |
| Terms: $t ::= \cdots \mid \text{new } t \mid \text{read } t \mid \text{write } t_1 t_2$ |

Figure 21: MAC with references.

the update $\Sigma(\ell)[n \mapsto t]$. Secure computations create, read and write references using primitives new, read and write respectively. Observe that their types are restricted according to the no read-up and no write-down rules, like those of label and unlabel—see Figure 20. A reference is represented as a value Ref $n :: \text{Ref } \ell \tau$ where n is an address pointing to the n-th cell of the ℓ-memory, which contains a term of type τ. Rule [NEW] extends the ℓ-labeled memory with the new term and returns a reference to it. The notation $|t_\ell|$ denotes the length of a list and is used to compute the address of a new reference—memories are zero-indexed. Rule [WRITE] evaluates its first argument to a reference and rule [WRITE2] overwrites the content of the memory cell pointed by the reference and returns unit. Similarly, rule [READ2] retrieves the term stored in memory and pointed to by the reference, which is evaluated via rule [READ].

13MACs implementation of labeled reference is a simple wrapper around Haskells type IORef. However, we denote references as a simple index into the labeled memory. This design choice does not affect our results.
7. Soundness

This section formally presents the security guarantees of the sequential calculus. Section 7.1 gives an overview of the proof technique (term erasure), Section 7.2 describes two-steps erasure, a novel technique that overcomes some shortcomings of vanilla term erasure, Section 7.3 defines the erasure function and Section 7.5 concludes with the progress-insensitive noninterference theorem (PINI).

7.1. Term Erasure

Term erasure is a proof technique to prove noninterference in functional programs. It was firstly introduced by Li and Zdancewic (Li and Zdancewic, 2010) and then used in a subsequent series of work on information-flow libraries (Russo et al., 2008; Stefan et al., 2011b, 2012b,a; Heule et al., 2015). The technique relies on an erasure function on terms, which we denote by $\varepsilon_{\ell A}$. This function essentially rewrites data above the attacker’s security level, denoted by label ℓA, to the special syntax node \bullet. Once $\varepsilon_{\ell A}$ is defined, the core of the proof technique consists of proving an essential relationship about the erasure function and reduction steps. The diagram in Figure 22 highlights this intuition. It shows that erasing sensitive data from a term t and then taking a step (orange path) is the same as firstly taking a step and then erasing sensitive data (cyan path), i.e., the diagram commutes. If term t leaks data whose sensitivity label is above ℓA, then erasing all sensitive data first and then taking a step might not be the same as taking a step and then erasing secret values—the sensitive data that has been leaked into t' might remain in $\varepsilon_{\ell A}(t')$ after all. From now on, we refer to this relationship as the single-step simulation between regular terms and erased ones.

7.2. Two Steps Erasure

Unfortunately, the simulation property is often a too strong requirement: there are primitives of MAC that do not leak intuitively, and yet there is no definition of $\varepsilon_{\ell A}$ that respects the commutativity of their simulation diagram. Typically, the erasure function erases either too much and breaks simulation of some other steps, or too little and some secret data remains after the erased term steps (see Section 10.1 for several concrete examples). To formally prove that those primitives are in fact secure, we have devised a technique called two-steps erasure, which performs erasure in two steps—a novel approach if compared with previous papers (Stefan et al., 2011a). Rather than being
a pure syntactic procedure, erasure is also performed by additional evaluation rules, triggered by special constructs introduced by the erasure function. Erasure occurs in two stages following the orange path in Figure 22, firstly by rewriting a problematic primitive to an ad hoc construct (along the vertical solid arrow), secondly through the reduction step of that construct (along the horizontal curly arrow). In the following, we apply two-steps erasure systematically to gain the extra flexibility needed to prove that several advanced primitives, such as new, write, join, satisfy single-step simulation.

7.3. Erasure Function

We proceed to define the erasure function for the pure calculus. Since security levels are at the type-level, the erasure function is type-driven. We write $\varepsilon_{\ell_A} (t :: \tau)$ for the erasure of term t with type τ of data not observable by the attacker. We omit the type annotation when it is either irrelevant or clear from the context. Ground values (e.g., True) are unaffected by the erasure function and, for most terms, the function is homomorphically applied, e.g., $\varepsilon_{\ell_A} (t_1 t_2 :: \tau) = \varepsilon_{\ell_A} (t_1 :: \tau \rightarrow \tau) \varepsilon_{\ell_A} (t_2 :: \tau')$. Figure 23 shows the definition of the erasure functions for the interesting cases. The content of a resource of type Labeled $\ell_H \tau$ is rewritten to • if the label is sensitive, i.e., it is not visible to the attacker’s label ($\ell_H \not\sqsubseteq \ell_A$), otherwise it is erased homomorphically. Similarly the erasure function rewrites the argument of label to •, if it gets labeled with a sensitive label or otherwise erased homomorphically. Observe that this definition respects the commutativity of the diagram in Figure 22 for rule [LABEL].

Figure 24 shows the erasure function for configuration, store and memory primitives. A configuration $\langle \Sigma, t \rangle$ is erased by erasing the store Σ and by rewriting term t to •, if it represents a sensitive computation, i.e., if term t has type MAC $\ell_H \tau$, where $\ell_H \not\sqsubseteq \ell_A$, and homomorphically otherwise, see Figure 24a. It is worth pointing out that the erasure of a term $t :: MAC \ell_H \tau$, where $\ell_H \not\sqsubseteq \ell_A$ is homomorphic if the term is considered in isolation, but aggressively erased to • as shown in Figure 24a.

14The special term • can have any type τ. We give the typing rules for the extended calculus in Figure C.52 in Appendix C.

15This is different from the conference version of this work (Vassena and Russo, 2016), where $\varepsilon_{\ell_A} (MAC \ell_H \tau :: t) = •$ if $\ell_H \not\sqsubseteq \ell_A$. Erasing such terms homomorphically simplifies the formal-
\[\varepsilon_{\mathcal{A}}(\langle \Sigma, t :: \text{MAC } \ell_H \tau \rangle) = \begin{cases} \langle \varepsilon_{\mathcal{A}}(\Sigma), \bullet \rangle & \text{if } \ell_H \nless \ell_A \\ \langle \varepsilon_{\mathcal{A}}(\Sigma), \varepsilon_{\mathcal{A}}(t) \rangle & \text{otherwise} \end{cases}\]

(a) Erasure for configuration.

\[\varepsilon_{\mathcal{A}}(t_s :: \text{Memory } \ell_H) = \begin{cases} \bullet & \text{if } \ell_H \nless \ell_A \\ \text{map } \varepsilon_{\mathcal{A}} t_s & \text{otherwise} \end{cases}\]

(b) Erasure for memory.

\[\varepsilon_{\mathcal{A}}(\text{Ref } n :: \text{Ref } \ell_H \tau) = \begin{cases} \text{Ref } \bullet & \text{if } \ell_H \nless \ell_A \\ \text{Ref } n & \text{otherwise} \end{cases}\]

\[\varepsilon_{\mathcal{A}}(\text{new } t :: \text{MAC } \ell_L (\text{Ref } \ell_H \tau)) = \begin{cases} \text{new } \bullet & \text{if } \ell_H \nless \ell_A \\ \text{new } \varepsilon_{\mathcal{A}}(t) & \text{otherwise} \end{cases}\]

\[\varepsilon_{\mathcal{A}}(\text{write } t_1 t_2) = \begin{cases} \text{write } \bullet \varepsilon_{\mathcal{A}}(t_1) \varepsilon_{\mathcal{A}}(t_2) & \text{if } \ell_H \nless \ell_A \\ \text{write } \varepsilon_{\mathcal{A}}(t_1) \varepsilon_{\mathcal{A}}(t_2) & \text{otherwise} \end{cases}\]

(c) Erasure for references and memory primitives.

Figure 24: Erasure for configuration, store and memory primitives.

24a If paired with a store in a configuration. Intuitively the term alone is just the description of a secure computation, which can be executed only if paired with a store in a configuration. The store \(\Sigma\) is erased pointwise by erasing the memories at each security level, i.e., \(\varepsilon_{\mathcal{A}}(\Sigma) = \lambda \ell.\varepsilon_{\mathcal{A}}(\Sigma(\ell))\), see Figure 24b. The erasure function collapses sensitive memories completely by rewriting them to \(\bullet\) and erase non-sensitive ones homomorphically. Figure 24c shows the erasure of references, whose address is rewritten to \(\bullet\) if sensitive, and primitive new and write, which is non-standard. Observe that these primitive perform a write effect and due to the no write-down rule they

\[\text{Observe that in [Vassena and Russo, 2016] this was not the case, because rule [UNLABEL_2] and [BIND_2] where given as pure reductions (\(\rightsquigarrow\)). By separating the pure semantics from the top-level monadic semantics, we simplify the formalization of applicative functors, see Section 10.1.}\]
can only affect memories at least as sensitive as the current secure computation. When these operations constitute a sensitive write, i.e., they involve memories not visible to the attacker ($\ell_H \not\sqsubseteq \ell_A$), we employ our two-steps erasure technique. Specifically the erasure function replaces constructs new and write with special constructs new* and write*, whose semantics simulates that of the original terms with a no-operation—see Figure 25. In particular rule [NEW*] leaves the store Σ unchanged (the argument to new* is ignored), and returns a dummy reference with address \cdot. The same principle applies to write*. Rule [WRITE1] evaluates the second argument to a reference, simulating rule [WRITE1] and [WRITE2] skips the write and just returns unit, simulating rule [WRITE2]. The presence of these rules ensures that any sensitive write operation can be simulated in a lock-step fashion. Note that the semantics of new* and write* correctly captures the unchanged observational power of an attacker performing sensitive write operations. We remark that \cdot, new* and write* and their semantics rules are introduced in the calculus due to mere technical reasons (as explained above)—they are not part of the surface syntax nor MAC.

Figure 26 shows the erasure function for the remaining terms of the sequential calculus, that is join and Labeled*. Using the same technique that we have described previously, we replace join with special term join*, when it is used to run a sensitive computation ($\ell_H \not\sqsubseteq \ell_A$). Erasure is then performed by means of rule [JOIN*], which immediately returns a dummy labeled value (Labeled \cdot) and the store unchanged. The rule captures the observational power of an attacker that runs a terminating sensitive computation. Observe in particular that the rule does not need to run the sensitive computation: the store can only be changed in sensitive memories (no write-down), which are not visible to the attacker, and the result of the computation is irrelevant—the attacker cannot unlabel it (no read-up), because it is marked as sensitive. What about computations that fail with an exception? In Figure 26, the erasure function not only rewrites the content of a sensitive exception to \cdot, as expected, but it also masks its
Terms: $t ::= \cdots \mid \text{join}_\bullet t$

$$
\varepsilon_{\ell_A}(\text{join } t :: \text{MAC } \ell_L \: (\text{Labeled } \ell_H \: \tau)) = \begin{cases}
\text{join}_\bullet \varepsilon_{\ell_A}(t) & \text{if } \ell_H \not\subseteq \ell_A \\
\text{join } \varepsilon_{\ell_A}(t) & \text{otherwise}
\end{cases}
$$

$$
\varepsilon_{\ell_A}(\text{Labeled}_\chi t :: \text{Labeled } \ell_H \: \tau) = \begin{cases}
\text{Labeled}_\bullet & \text{if } \ell_H \not\subseteq \ell_A \\
\text{Labeled}_\chi \varepsilon_{\ell_A}(t) & \text{otherwise}
\end{cases}
$$

$(\text{JOIN}_\bullet) \: \langle \Sigma, \text{join}_\bullet t \rangle \longrightarrow \langle \Sigma, \text{return } (\text{Labeled}_\bullet) \rangle$

Figure 26: Erasure of join and Labeled_χ and semantics of join_\bullet.

exceptional nature, by replacing the constructor Labeled_χ with Labeled, thus ensuring that rule $[\text{JOIN}_\bullet]$ simulates rule $[\text{JOIN}_\chi]$ as well. Crucially, we have the freedom of choosing this definition without breaking simulation, because no other construct can detect, either explicitly or implicitly, the difference. For instance, rule $[\text{UNLABEL}_\chi]$ operates on labeled expressions containing exceptions. In this case, if the labeled exception is not visible to the attacker, then unlabel must be performed in a non-visible computation as well, due to the typing rules. Operation unlabel then gets rewritten to \bullet and the step is then simulated by rule $[\text{HOLE}]$ instead. As a result of that, and unlike the approach taken by Stefan et al. in (Stefan et al., 2012b), there are no sensitive labeled exceptions in erased terms.

7.4. Discussion

Term Erasure. We prove the single-step simulation directly over the small-step reduction relation. Instead, other works (Li and Zdancewic, 2010; Russo et al., 2008; Stefan et al., 2011b, 2012b,a; Heule et al., 2015) prove the simulation by relating operational semantics step reductions (upper part in Figure 25) with reductions on a ℓ_A-indexed small-step relation of the form $c \longrightarrow_{\ell_A} \varepsilon_{\ell_A}(c')$, i.e., a relation which applies erasure at every reduction step. The reason for that is wired deeply in the dynamic nature of the enforcement. For instance, LIO considers labels as terms, which makes difficult to know what data is sensitive until run-time. In contrast, MAC does not need such an auxiliary construction because, due to its static nature, labels are not terms but rather type-level entities and therefore known before execution. In this light, our erasure function can safely erase any sensitive information found in labeled terms according to their type. Our small-step semantics satisfies type-preservation, i.e., reduction does not change types of terms, therefore labels are unaffected by execution—freeing us from the need to use a special small-step relation like \rightarrow_{ℓ_A}.

23
Masking Sensitive Exceptions. In previous work, labeled exceptions are erased by erasing their content according to their label, but always preserving their exceptional state (Stefan et al., 2012b). In contrast, we mask sensitive exceptions in erased programs. More specifically, erasing sensitive exceptions always results in erased unexceptional values—in other words, there are no sensitive exceptions in erased programs. Note that the simulation between terms and their erased counterparts guarantees that this rewriting is sound. In particular sensitive exception handling routines, the only routines which can distinguish exceptional from unexceptional sensitive values, gets also erased and do not occur in erased programs.

Memory. It is known that dealing with dynamic allocation of memory makes it challenging to prove noninterference (e.g., (Banerjee and Naumann, 2005; Hedin and Sands, 2006)). One manner to tackle this technicality is by establishing a bijection between public memory addresses of the two executions we want to relate and considering equality of public terms up to such notion (Banerjee and Naumann, 2005). Instead, and similar to other work (Heule et al., 2015; Stefan et al., 2011a), we compartmentalize the memory into isolated labeled segments, one for each label of the lattice. This way, allocation in one segment does not affect the others. The fact that GHC’s memory is non-split, does not compromise our security guarantees, because references are part of MAC’s internals and they cannot be inspected or deallocated explicitly. However, this memory model assumes infinite memory, since reference allocation never fails. This assumption is not realistic for actual systems, where physical resources such as memory are finite. We conjecture that this gap between MAC and the model presented here, i.e., memory exhaustion, constitutes a covert channel that can be used to leak secrets with the same bandwidth as the termination covert channel (Askarov et al., 2008). In the conference version of this work (Vassena and Russo, 2016), we have explored an alternative way to prove single-step simulation for terms new and write consists in extending the semantics of memory operations to node •, i.e., by defining |•| = • and • • → t = •. Thanks to two-steps erasure, we can prove simulation as we did here, without recurring to a non-standard memory semantics. A non split-memory model requires some care when proving noninterference, and in fact, we have identified problems with the proofs in manuscripts and articles related to LIO (Stefan et al., 2011b, 2012b). We refer interested readers to Appendix B of our conference version (Vassena and Russo, 2016) for details.

7.5. Progress-Insensitive Noninterference

The sequential calculus that we have presented satisfies progress-insensitive noninterference. The proof of this result is based on two fundamental properties: single-step simulation and determinancy of the small step semantics. In the following, we assume well-typed terms.

17Unrestricted access to shared resources often constitutes a covert channel in concurrent systems. The resources can be either hardware (e.g., physical memory, caches (Stefan et al., 2013) and multi-core processors) or software, such as components of the run-time system of a high-level language. These include the scheduler (Russo and Sabelfeld, 2006a,b) and the garbage collector (Pedersen and Askarov, 2017) or the language evaluation strategy such as lazy evaluation (Vassena et al., 2017; Buiras and Russo, 2013).
Proposition 1 (Single-step Simulation). If $c_1 \rightarrow c_2$ then $\varepsilon_{\ell_A}(c_1) \rightarrow \varepsilon_{\ell_A}(c_2)$.

Proof (Sketch). By induction on the reduction steps and typing judgment. Sensitive computations are simulated by transition $\langle \Sigma, \bullet \rangle \rightarrow \langle \Sigma, \bullet \rangle$, obtained by lifting rule [HOLE] with [PURE]. Non-sensitive computations are simulated by the same rule that performs the non-erased transition, except when it involves some sensitive write operations, e.g., in rules [NEW, WRITE$_1$, WRITE$_2$, JOIN, JOIN$_\chi$], which are simulated by rules [NEW$_\bullet$, WRITE$_\bullet 1$, WRITE$_\bullet 2$, JOIN$_\bullet$].

Proposition 2 (Determinancy). If $c_1 \rightarrow c_2$ and $c_1 \rightarrow c_3$ then $c_2 \equiv c_3$.

Proof. By standard structural induction on the reductions.

Before stating progress-insensitive noninterference, we define low-equivalence for configurations.

Definition 1 (ℓ_A-equivalence). Two configurations c_1 and c_2 are indistinguishable from an attacker at security level ℓ_A, written $c_1 \approx_{\ell_A} c_2$, if and only if $\varepsilon_{\ell_A}(c_1) \equiv \varepsilon_{\ell_A}(c_2)$.

Using Proposition 1 and 2 we show that our semantics preserves ℓ_A-equivalence.

Proposition 3 (\approx_{ℓ_A} Preservation). If $c_1 \approx_{\ell_A} c_2$, $c_1 \rightarrow c'_1$, and $c_2 \rightarrow c'_2$, then $c'_1 \approx_{\ell_A} c'_2$.

By repeatedly applying Proposition 3 we prove progress-insensitive noninterference.

Theorem 1 (PINI). If $c_1 \approx_{\ell_A} c_2$, $c_1 \Downarrow c'_1$ and $c_2 \Downarrow c'_2$, then $c'_1 \approx_{\ell_A} c'_2$.

8. Concurrency

Every day, millions of users around the world use concurrent applications, such as email, chat rooms, social networks, e-commerce platforms etc. These services are normally designed concurrently so that multithreaded servers can handle a large number of user requests simultaneously by running multiple instances of the same application. MAC features concurrency and synchronization variables, which shows that the secure-by-construction programming model that we propose is possible even in a concurrent setting. The extension is non-trivial: the possibility to run simultaneous MAC ℓ computations provides attackers with new means to bypass security checks.

18Symbol \equiv denotes equivalence up to alpha equivalence in the calculus with named variables. In our mechanized proofs we use Bruijn indexes and we obtain syntactic equality.
8.1. Termination Attack

In Section 7, we have proved that the sequential calculus satisfies progress-insensitive noninterference, a security condition that is too weak for concurrent systems. The key observation is the fact that a non-terminating sensitive computation at security level ℓ_H embedded in a non-sensitive one at security level ℓ_L via join, will suppress public side-effects that follows join. Since the embedded computation is sensitive, the suppressed public events may depend on a secret, therefore revealing a bit of secret information. To illustrate this point, we present the attack in Figure 27.

We assume that there exists a function print$^{\text{MAC}}$ which prints an integer on a public channel. Observe how function leak may suppress subsequent public events with infinite loops.

Unfortunately concurrency magnifies the bandwidth of the termination covert channel to be linear in the size (of bits) of secrets [Stefan et al., 2012a, 2012b], which permits to leak any secret systematically and efficiently. If a thread runs leak 0 secret, the code publishes 0 only if the first bit of secret is 0; otherwise it loops (see function loop) and it does not produce any public effect—see Figure 28. Similarly, a thread running leak 1 secret will leak the second bit of secret, while a thread running leak 2 secret will leak the third bit of it and so on. An attacker might then leak the whole secret by spawning as many threads as bits in the secret, i.e., $|\text{secret}|$, where each thread runs the one-bit attack described above and n matches the bit being leaked (e.g., $n = 0$ for the first bit, $n = 1$ for the second one, etc.).

\begin{figure}[h]
\centering
\begin{verbatim}
fork :: $\ell_L \sqsubseteq \ell_H \Rightarrow MAC{\ell_H}() \rightarrow MAC{\ell_L}()$
\end{verbatim}
\caption{API for concurrency.}
\end{figure}

\begin{figure}[h]
\centering
\begin{verbatim}
leak :: Int \rightarrow Labeled H Secret \rightarrow MAC L ()
leak n secret = do
 join$^{\text{MAC}}$(do bits ← unlabel secret when (bits !! n) loop)
 print$^{\text{MAC}}$ n
\end{verbatim}
\caption{Termination leak.}
\end{figure}

\[\text{If the physical execution time of a program depends on the value of the secret, then an attacker with an arbitrary precise stopwatch can deduce information about the secret by timing the program. This covert channel is known as the external timing covert channel (Bortz and Boneh, 2007; Felten and Schneider, 2000). This article does not address the external timing covert channel, which is a harder problem and for which mitigation techniques exist (Askarov et al., 2010; Zhang et al., 2011, 2012).}

\[\text{Furthermore, the presence of threads introduce the internal timing covert channel (Smith and Volpano, 1998), a channel that gets exploited when, depending on secrets, the timing behavior of threads affect the order of events performed on public-shared resources. Since the same countermeasure closes both the internal timing and termination covert channels, we focus on the latter.}\]
To securely support concurrency, MAC forces programmers to decouple MAC computations with sensitive labels from those performing observable side-effects—an approach also taken in LIO (Stefan et al., 2012a). As a result, non-terminating computations based on secrets cannot affect the outcome of public events.

To achieve this behavior, MAC replaces join by fork—see Figure 29. Informally, it is secure to spawn sensitive computations (of type MAC $\ell_H ()$) from non-sensitive ones (of type MAC $\ell_L ()$) because that decision depends on data at level ℓ_L, which is no more sensitive ($\ell_L \subseteq \ell_H$). From now on, we call sensitive (non-sensitive) threads those executing MAC computations with a label non-observable (observable) to the attacker. In the two-point lattice, for example, threads running MAC $H ()$ computations are sensitive, while those running MAC $L ()$ are observable by the attacker.

8.2. Calculus

Figure 30 extends the calculus from Section 3 with concurrency. It introduces global configurations of the form $\langle \omega, \Sigma, \Phi \rangle$ composed by an abstract scheduler state ω, a store Σ and a pool map Φ, see Figure 30a. Threads are secure computations of type MAC $\ell ()$ and are organized in isolated thread pools according to their security label. A pool t_s in the category Pool ℓ contains threads at security level ℓ and is accessed
Figure 31: Decorated Sequential Semantics (interesting rules).

exclusively through the pool map. We use the same notation for thread pools and pool maps that we have defined to manipulate and extend stores and memories. Term \textit{fork} \(t \) spawns thread \(t \) and replaces \textit{join} in the calculus. Without \textit{join}, constructor \textit{Labeled} \(\chi \) becomes redundant and is also removed. Our calculus includes also synchronization primitives (Russo, 2015), we refer to Appendix B for details.

Relation \(c_1 \hookrightarrow c_2 \) denotes that concurrent configurations \(c_1 \) steps to \(c_2 \). Figure 30b shows the scheme rule for \(c_1 \hookrightarrow c_2 \) and highlights the top-level common aspects to all the rules, which we detail later on. The relation \(\omega_1 \xrightarrow{(\ell, n, e)} \omega_2 \) represents a transition in the scheduler, that depending on the initial state \(\omega_1 \), decides to run thread identified by \((\ell, n)\), which is retrieved from the configuration \((\Phi(\ell)[n])\) and executed. Concurrent events inform the scheduler about the evolution of the global configuration, so that it can realize concrete scheduling policies and update its state accordingly. Event \textit{Step} denotes a single sequential step, event \textit{Fork} \(\ell n \) informs the scheduler that the current thread has forked a new thread identified by \((\ell, n)\), event \textit{Done} is generated when a thread has terminated and event \textit{Stuck} denotes that a thread is stuck, e.g., on a synchronization variable. Note that the scheduled thread determines, with its execution and with sequential event \(s \), triggered by the decorated sequential step, i.e., \(\langle \Sigma, t_1 \rangle \xrightarrow{s} \langle \Sigma, t_2 \rangle \), which concurrent event \(e \) should be passed to the scheduler. Lastly, the final configuration is composed by the updated scheduler state, i.e., \(\omega_2 \), the updated memory, i.e., \(\Sigma_2 \) and the pool map updated with the executed thread, i.e., \(\Phi(\ell)[n] := t_2 \).

\textit{Decorated Semantics.} Figure 31 shows the interesting rules of the decorated semantics. Rule \texttt{[SFORK]} is the only rule that explicitly generates event \textit{fork(} \(t \) \textit{)} and context rules \texttt{[BIND1,CATCH1]} propagate the same event generated by the premise step. All the other rules generate the empty event \(\emptyset \). Note that, without context rules we could have given the semantics of \textit{fork} in the concurrent semantics directly.

\textit{Concurrent Semantics.} Figure 32 shows the actual semantics of the concurrent calculus, where each rule generates the appropriate event for the scheduler depending on the state of the thread scheduled and the sequential event. Concurrent rule \texttt{[STEP]} sends...
\[
\begin{align*}
\text{(STEP)} & \\
\omega \xrightarrow{\ell,n,\text{Step}} \omega' & \quad \langle \Sigma, \Phi(\ell)[n] \rangle \rightarrow_{\emptyset} \langle \Sigma', t' \rangle \\
\langle \omega, \Sigma, \Phi \rangle & \mapsto \langle \omega', \Sigma', \Phi(\ell)[n] := t' \rangle \\
\text{(CFORK)} & \\
\langle \Sigma, \Phi(\ell_L)[n] \rangle \xrightarrow{\text{fork}(t::\text{MAC} \ell_H)} & \langle \Sigma, t' \rangle \\
\Phi(\ell_H)[m] = m & \quad \Phi' = \Phi(\ell_H)[m \mapsto t] \\
\langle \omega, \Sigma, \Phi \rangle & \mapsto \langle \omega', \Sigma', \Phi(\ell_L)[n] := t' \rangle \\
\text{(DONE)} & \\
\omega \xrightarrow{\ell,n,\text{Done}} & \quad \Phi(\ell)[n] = v \\
\langle \omega, \Sigma, \Phi \rangle & \mapsto \langle \omega', \Sigma, \Phi \rangle \\
\text{(STUCK)} & \\
\omega \xrightarrow{\ell,n,\text{Stuck}} & \quad \langle \Sigma, \Phi(\ell)[n] \rangle \nrightarrow \\
\langle \omega, \Sigma, \Phi \rangle & \mapsto \langle \omega', \Sigma, \Phi \rangle
\end{align*}
\]

Figure 32: Concurrent Semantics

event \textit{Step} to the scheduler, because the thread generates sequential event \emptyset, and then updates the store and the thread pool accordingly. Rule [CFORK] generates concurrent event \textit{Fork} \ell_H m, because the scheduled thread, identified by label \ell_L and number n, spawns a child thread with type \ell::\text{MAC} \ell_H (), generating event \textit{fork}(t::\text{MAC} \ell_H ()). Observe that the spawned thread is uniquely identified by the label \ell_H and number m and placed in pool \Phi(\ell_H) in the \textit{free} position \(m = |\Phi(\ell_H)| \). The extended pool map \Phi' is lastly updated with the parent thread. In rule [DONE], \Phi(\ell)[n] = v denotes that the scheduled thread is a value, i.e. the computation has terminated, then the rule sends event \textit{Done} to the scheduler and leaves the store and pool map unchanged—terminated threads remain in pool map \Phi. In rule [STUCK], the notation \Phi(\ell)[n] \nrightarrow denotes that the thread is \textit{stuck}, i.e., it is not a value nor a redex. The scheduler is then informed by event \textit{Stuck} and the store \Sigma and pool map \Phi are left unchanged.

8.3. Round-robin scheduler

Figure 33 shows a round-robin scheduler with time-slot of one step, as an example of a scheduler that can be securely employed in our concurrent calculus. The state of the scheduler is a queue that tracks the identifiers of \textit{alive} threads in the global configuration. A thread is uniquely identified by a pair consisting of a label, i.e., its security level, and a thread identifier, i.e., its position in the corresponding thread pool. The queue is concretely represented by a list of thread identifiers, whose first element identifies the next thread in the schedule. After executing one step (event \textit{Step}), the current thread has used up its time slot and is enqueued. If the scheduled thread cannot execute (event \textit{Stuck}), it is skipped and enqueued as well. When the current thread has terminated (event \textit{Done}), the thread is not alive anymore and hence removed from the
\[\omega ::= (\ell, n) : \omega \mid [] \]

\[
\begin{align*}
(\ell, n) : \omega \xrightarrow{\ell, n, \text{Step}}_{RR} \omega + [(\ell, n)] \\
(\ell, n) : \omega \xrightarrow{\ell, n, \text{Stuck}}_{RR} \omega + [(\ell, n)] \\
(\ell, n) : \omega \xrightarrow{\ell, n, \text{Done}}_{RR} \omega
\end{align*}
\]

\[(\ell_L, n_1) : \omega \xrightarrow{(\ell_L, n_1, \text{Fork} \ell_H n_2)}_{RR} \omega + [(\ell_H, n_2), (\ell_L, n_1)] \]

Figure 33: Round-robin scheduler.

\[
\begin{align*}
\text{fmap} :: (a \to b) \to \text{Labeled} \ell a \to \text{Labeled} \ell b \\
((*) :: \text{Labeled} \ell (a \to b) \to \text{Labeled} \ell a \to \text{Labeled} \ell b \\
\text{relabel} :: \ell_L \sqsubseteq \ell_H \Rightarrow \text{Labeled} \ell_L a \to \text{Labeled} \ell_H a
\end{align*}
\]

Figure 34: API of Flexible labeled values.

queue. Message \((\ell_L, n_1, \text{Fork} \ell_H n_2)\) informs the scheduler that thread \((\ell_L, n_1)\) has spawned thread \((\ell_H, n_2)\), which is then enqueued with the current thread.

9. Flexible Labeled Values

In this section we extend the API of labeled values with new operations that allow to perform pure (side-effect free) computations with labeled data—see Figure 34. Observe that these primitives operate on labeled data without using label and unlabel, thus avoiding incurring in the no read-up and no write-down restrictions and irrespectively of their security level. For instance, a non-sensitive computation at security level \(\ell_L\) can operate on sensitive labeled data at security level \(\ell_H\) using fmap, without forking threads in a concurrent setting, thus introducing flexibility when data is processed by pure functions. We remark that, depending on the evaluation strategy of the host language (i.e. call-by-value or call-by-name), a naive implementation of these primitives is vulnerable to leaks via non-termination—we elaborate on this point later, in Section 9.3. Section 9.1 gives a broad description of these primitives, Section 9.2 shows their flexibility with an example, and Section 9.3 formalizes them in our calculus.

9.1. Functors and Relabeling

Intuitively, a functor is a container-like data structure which provides a method called fmap that applies (maps) a function over its contents, while preserving its structure. Lists are the most canonical example of a functor data-structure. In this case, fmap corresponds to the function map, which applies a function to each element of a
list, e.g. \(\text{fmap} \ (+1) \ [1, 2, 3] \equiv [2, 3, 4]\). A functor structure for labeled values allows to manipulate sensitive data without the need to explicitly extract it—see Figure 34. For instance, \(\text{fmap} \ (+1) \ d\), where \(d :: \text{Labeled} \ H \ \text{Int}\) stores the number 42, produces the number 43 as a sensitive labeled value.

To aggregate data at possibly different security levels \(\text{MAC}\) provides primitives \(\text{relabel}\) and \((\langle \ast \rangle)\). Primitive \(\text{relabel}\) upgrades the security level of a labeled value, which is useful to “lift” data to an upper bound of all the data involved in a computation prior to combining them. Infix operator \((\langle \ast \rangle)\) supports function application within a labeled value, i.e. it allows to feed functions wrapped in a labeled value \((\text{Labeled} \ \ell \ (a \rightarrow b))\) with arguments also wrapped \((\text{Labeled} \ \ell \ a)\), where aggregated results get wrapped as well \((\text{Labeled} \ \ell \ b)\).

Discussion. In functional programming, operator \((\langle \ast \rangle)\) is part of the \textit{applicative functors} \cite{Mcbride:2008} interface, which in combination with \text{fmap}, is used to map functions over functors. Note that if labeled values were full-fledged applicative functors, our API would also include the primitive \(\text{pure} :: a \rightarrow \text{Labeled} \ \ell \ a\). This primitive brings arbitrary values into labeled values, which might break the security principles enforced by \(\text{MAC}\). Instead of \(\text{pure}\), \(\text{MAC}\) centralizes the creation of labeled values in the primitive label. Observe that, by using \(\text{pure}\), a programmer could write a computation \(m :: \text{MAC} \ H \ (\text{Labeled} \ L \ a)\) where the \textit{created} labeled information is sensitive rather than public. We argue that this situation ignores the no-write down principle, which might bring confusion among users of the library. More importantly, freely creating labeled values is not compatible with the security notion of clearance, where secure computations have an upper bound on the kind of sensitive data they can observe and generate. This notion becomes useful to address certain covert channels \cite{Zeldovich:2006} as well as poison-pill attacks \cite{Hritcu:2013}. While \(\text{MAC}\) does not yet currently support clearance, it is an interesting direction for future work.

9.2. Examples

The functor API of labeled values, i.e., \text{fmap}, is a handy tool that functional programmers use to code simple concise functions elegantly. In Figure 35 the 1-line function \text{isShort} checks whether the password is weak because it is too short. In the anonymous function, \text{pwd} is the unlabeled password, and the expression \(|\text{pwd}| \leq 5\) checks if the password contains less than 5 characters. Observe that what the function computes is an attribute of the password, therefore it should be considered sensitive. The API of \text{fmap} ensures that by preserving the label of the labeled argument, i.e., \text{Labeled} \ H \ \text{String}, in the resulting labeled value, i.e., \text{Labeled} \ H \ \text{Bool}. Compare the program in Figure 35 with the homonym program in Figure 36 written without \text{fmap}, but using \text{join} instead. Firstly, note that the imperative program has a different signature: it must necessarily involve \(\text{MAC}\) computation in order to perform

\begin{figure}[h!]
\centering
\text{isShort} :: \text{Labeled} \ H \ \text{String} \rightarrow \text{Labeled} \ H \ \text{Bool}
\text{isShort} = \text{fmap} \ (\lambda \text{pwd} \rightarrow |\text{pwd}| \leq 5)
\caption{A pure computation on a password.}
\end{figure}
isShort :: Labeled H String → MAC L (Labeled H Bool)
isShort lpwd = do
 join (do
 pwd ← unlabel lpwd
 return (|pwd| ≤ 5))

Figure 36: Without fmap pure sensitive computations have an impure type.

unlabel. Since the password lpwd is sensitive, i.e., it has type Labeled H String, only a sensitive computation can unlabel it. Then, the program employs join to convert the sensitive computation into a sensitive labeled value, which then gets wrapped in a non-sensitive computation, i.e., MAC L (Labeled H Bool). In a concurrent setting, where join is not available, the whole program must be completely restructured, because threads have type MAC H () and may not return any other result in a non-sensitive computation.

The strength of a password is often estimated by combining several syntactic aspects, such as its length or the presence and number of special characters and digits. Suppose now that some third-party API function provides such syntactic checks in the form of a MAC labeled pure function isWeak, see Figure 37a. The type system guarantees that the function is secure, because it has type String → Bool, however the third party has labeled it with its own label L', because it wants to strictly control who can use it and under what terms. In order to keep the code of our password-checker isolated from that of the third party, while still providing functionality to the user, we incorporate the new label L' into the system and modify the lattice as shown in Figure 37c. The lattice reflects our mistrust over the third-party code by making L and L' incomparable elements. Thanks to MAC’s security guarantees, we can safely run third-party mistrusted code, i.e., isWeak, with the user’s secret password, as shown in Figure 37b. In particular relabel upgrades the function to isWeak to security level H (observe that L' ⊑ H in the lattice), and then applies the function to the password (pwd) using the applicative functor operator, i.e., (⋆), which protects the final result with label H.

Figure 37: Combining heterogeneously labeled data.
9.3. Calculus

In Figure 38, we extend our calculus with the primitives for flexible manipulation of labeled values, discussed in the previous section. Firstly we add terms \(\text{fmap } t_1 t_2 \), \(t_1 \langle*\rangle t_2 \) and \(\text{relabel } t \), whose types correspond to those given in Figure 34. Primitive \(\text{fmap} \) is implemented in terms of \(\langle*\rangle \) in rule [FMAP], where the function is simply lifted to labeled value (every applicative functor is also a functor). Rules \([\langle*\rangle_1, \langle*\rangle_2]\) evaluate the first and second argument to a labeled value respectively, which are then combined by rule \([\langle*\rangle_3]\), which applies the function to the argument and wraps the result in a labeled value. Rule \([\text{RELABEL}_1]\) evaluates its argument to weak-head normal form and rule \([\text{RELABEL}_2]\) upgrades its label. Observe that since labels are types \(\text{relabel} \) leaves the content of \(\text{Labeled} \) unchanged. We remark that these primitives are secure both in the concurrent and sequential calculus, where their semantics must be adjusted to handle exceptional values as well, i.e., constructor \(\text{Labeled}_\chi \), which is not present in the concurrent calculus. We refer to Appendix A for more details.

Discussion. The API of flexible labeled values shown in Figure 34 might seem insecure at first sight. In particular, it might be counter-intuitive that a public computation might be able to manipulate a secret with an arbitrary function without introducing potential leaks. Figure 39 shows an attack that attempts to leak via non-termination the \(n \)-th bit of a secret. Function \(\text{leak} \) applies function \(\text{loopOn} \) on the secret using \(\text{fmap} \) and then performs a non-sensitive side-effect, i.e., \(\text{publish } n \), which outputs the number \(n \) on a public channel. Interestingly, depending on the evaluation strategy of
\[
\text{leak :: Int} \to \text{Labeled } H \text{ Secret} \to \text{MAC L ()}
\]

\[
\text{leak } n \text{ secret} = \text{let result} = \text{fmap loopOn secret in } \text{publish n}
\]

\[
\text{where loopOn} = \lambda \text{bits} \to \text{if (bits !! } n \text{) then loop else bits}
\]

Figure 39: Function leak attempts to leak the \(n\)-th bit of secret.

the language, the attack might succeed. Specifically, under a call-by-value evaluation strategy, function \(\text{loopOn}\) passed to \(\text{fmap}\) is eagerly applied to the secret, which might introduce a loop depending on the value of the \(n\)-th bit of the secret suppressing the subsequent public action \(\text{publish } n\). Under a call-by-name evaluation strategy, however, function \(\text{loopOn}\) does not get immediately evaluated since \(\text{result}\) is not needed for computing \(\text{publish } n\). Therefore, \(\text{publish } n\) gets executed independently of the value of the secret, i.e., no termination leaks are introduced. Instead, \(\text{loopOn}\) gets evaluated when and only if \(\text{result}\) is unlabeled and its content inspected—something that is possible only in a computation at security level at least as sensitive as \(H\) because of the no-read up policy, where it is secure to do so. We remark that it is possible to close this termination channel under a call-by-value semantics by defining \(\text{Labeled}\) with an explicit suspension, e.g. \(\text{data Labeled } ℓ\ a = \text{Labeled } (()) \to a\), and corresponding forcing operation, so that \(\text{fmap}\) behaves lazily as desired.

10. Soundness of Concurrent Calculus

The concurrent calculus that we have presented satisfies progress sensitive noninterference. Section 10.1 extends the erasure function for the concurrent calculus and for flexible labeled values. To obtain a parametric proof of noninterference, we assume certain properties about the scheduler. Specifically, our proof is valid for deterministic schedulers which fulfill progress and noninterference themselves, i.e., schedulers cannot leverage sensitive information in threads to determine what to schedule next. Section 10.2 formalizes the requirements for such suitable schedulers. In Section 10.3 we prove a scheduler-parametric progress-sensitive noninterference theorem for our calculus and we constructively obtain a proof that \(\text{MAC}\) is secure with a round-robin scheduler by simply instantiating our main theorem.

10.1. Erasure Function

Figure 40 shows the erasure function for the concurrent calculus. A concurrent configuration \(\langle \omega, \Sigma, \Phi \rangle\) is erased by erasing each component, where the erasure of the scheduler state \(\omega\) is scheduler specific (Figure 40a). Similarly to store \(\Sigma\), pool map \(\Phi\) is erased pointwise, i.e., \(\varepsilon_{\ell, A}(\Phi) = \lambda \ell.\varepsilon_{\ell, A}(\Phi(\ell))\), and sensitive thread pools are rewritten to \(\bullet\) and erased homomorphically otherwise, just like memories (see Figure 40b). Observe that primitive \(\text{fork}\) performs a write effect because it adds a new thread to a thread pool, therefore we employ our two-steps erasure technique, just like we did for memory primitives. Specifically, the erasure function replaces \(\text{fork}\) with \(\text{fork}_\bullet\) whenever it spawns a sensitive thread, which would write to a sensitive thread pool \((\ell_H \not\subseteq \ell_A)\), see
\[\varepsilon_{\ell_A}(\langle \omega, \Sigma, \Phi \rangle) = \langle \varepsilon_{\ell_A}(\omega), \varepsilon_{\ell_A}(\Sigma), \varepsilon_{\ell_A}(\Phi) \rangle \]

(a) Erasure for concurrent configuration.

\[\varepsilon_{\ell_A}(t_s :: \text{Pool } \ell_H) = \begin{cases}
 \bullet & \text{if } \ell_H \not\sqsubseteq \ell_A \\
 \text{map } \varepsilon_{\ell_A} t_s & \text{otherwise}
\end{cases} \]

(b) Erasure for thread pool.

\[\varepsilon_{\ell_A}(\text{fork } t) = \begin{cases}
 \text{fork } \varepsilon_{\ell_A}(t :: \text{MAC } \ell_H()) & \text{if } \ell_H \not\sqsubseteq \ell_A \\
 \text{fork } \varepsilon_{\ell_A}(t) & \text{otherwise}
\end{cases} \]

(c) Erasure of fork.

\[\varepsilon_{\ell_A}(\text{fork}(t :: \text{MAC } \ell_H())) = \begin{cases}
 \text{fork } (\varepsilon_{\ell_A}(t)) & \text{if } \ell_H \not\sqsubseteq \ell_A \\
 \varepsilon_{\ell_A}(t) & \text{otherwise}
\end{cases} \]

(d) Erasure for sequential fork event.

\[\varepsilon_{\ell_A}(\text{Fork } \ell_H n) = \begin{cases}
 \text{Step} & \text{if } \ell_H \not\sqsubseteq \ell_A \\
 \text{Fork } \ell_H n & \text{otherwise}
\end{cases} \]

(e) Erasure for concurrent fork event.

Figure 40: Erasure function for concurrent calculus.

Figure 40c. Sequential fork-events are erased similarly in order to ensure simulation, i.e., the erasure function rewrites \text{fork}(t) to fork \bullet (\varepsilon_{\ell_A}(t)) when \(t \) is sensitive—see Figure 40d. Sequential event \(\varnothing \) is not affected by the erasure function. The erasure function masks spawning sensitive threads from the scheduler as well by erasing concurrent events accordingly (Figure 40e). In this case it rewrites event Fork \ell_H n to Step whenever \(\ell_H \not\sqsubseteq \ell_A \)—the other events are not affected by the erasure function. In the sequential calculus fork \bullet is reduced by rule [SFORK \bullet], defined in Figure 41, which simulates the decorated reduction of fork. A new concurrent rule [CFORK \bullet]
Seq. Effect: \(s ::= \cdots | \text{fork}_\bullet(t) \)

Terms: \(t ::= \cdots | \text{fork}_\bullet t \)

\[
\text{Seq. Effect: } \begin{align*}
\langle \Sigma, \text{fork}_\bullet t \rangle \rightarrow_{\text{fork}_\bullet t} \langle \Sigma, \text{return }() \rangle
\end{align*}
\]

\[
\text{Terms: } \begin{align*}
\langle \omega, \Sigma, \Phi(\ell_L)[n] := t' \rangle \leftarrow \langle \omega', \Sigma, \Phi(\ell_L)[n] := t' \rangle
\end{align*}
\]

Figure 41: Sequential and concurrent semantics of \(\text{fork}_\bullet \).

\[
\begin{align*}
\varepsilon_{\ell_A}(\text{fmap } t_1 t_2 :: \text{Labeled } \ell_H \tau) &= \begin{cases}
\text{fmap}_\bullet \varepsilon_{\ell_A}(t_1) \varepsilon_{\ell_A}(t_2) & \text{if } \ell_H \not\sqsubseteq \ell_A \\
\text{fmap} \varepsilon_{\ell_A}(t_1) \varepsilon_{\ell_A}(t_2) & \text{otherwise}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\varepsilon_{\ell_A}(t_1 (\ast) t_2 :: \text{Labeled } \ell_H \tau) &= \begin{cases}
\varepsilon_{\ell_A}(t_1) (\ast)_\bullet \varepsilon_{\ell_A}(t_2) & \text{if } \ell_H \not\sqsubseteq \ell_A \\
\varepsilon_{\ell_A}(t_1) (\ast) \varepsilon_{\ell_A}(t_2) & \text{otherwise}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\varepsilon_{\ell_A}(\text{relabel } t :: \text{Labeled } \ell_H \tau) &= \begin{cases}
\text{relabel}_\bullet \varepsilon_{\ell_A}(t) & \text{if } \ell_H \not\sqsubseteq \ell_A \\
\text{relabel} \varepsilon_{\ell_A}(t) & \text{otherwise}
\end{cases}
\end{align*}
\]

Figure 42: Erasure of flexible labeled values.

detects the sequential event \(\text{fork}_\bullet(t) \) and skips spawning the thread, i.e., it does not insert it in the thread pool, and sends concurrent event \(\text{Step} \) to the scheduler, therefore simulating precisely rule \(\text{CFork}_\bullet \) when a non-sensitive thread of type \(\text{MAC} \ell_L() \) forks a sensitive thread \(\text{MAC} \ell_H() \).

Context-Aware Erasure Function. A common challenge when reasoning about security of IFC libraries is that the sensitivity of a term may depend on context where they are used. Consider for instance the primitive \(\text{relabel} \), which upgrades the security level of a labeled term. A public number, e.g., \(\text{Labeled } 42 :: \text{Labeled } L \text{ Int} \), should be treated as secret when in the context of relabeling, e.g., \(\text{relabel} \ (\text{Labeled } 42) :: \text{Labeled } H \text{ Int} \). Doing otherwise, i.e., erasing the term homomorphically, breaks simulation because sensitive data produced by \(\text{relabel} \) remains after erasure. For example \(\text{relabel} \ (\text{Labeled } 42) \) is homomorphically erased to \(\text{relabel} \varepsilon_{L}(\text{Labeled } 42 :: \text{Labeled } L \text{ Int}) \) which reduces on the orange path in Figure 22 to \(\text{Labeled } 42 \neq \)
Labeled •, obtained on the cyan path by \(\varepsilon_L(Labeled\ 42 :: Labeled\ H\ Int) \), thus breaking commutativity of rule [RELABEL2].

Then, one might be tempted to stretch the definition of the erasure function to accommodate for the problematic cases shown above. Unfortunately, this approach does not work, because it will necessarily break simulation for other cases. We support this statement by showing that this is the case for any arbitrary erasure function that is suitable for \(relabel\ t :: Labeled\ H\ \tau \), where \(t :: Labeled\ L\ \tau \). Observe that we need a different behavior for our erasure function for public labeled values when embedded in \(relabel \), which we will capture in a different auxiliary erasure function \(\varepsilon'_L \). Suppose we defined \(\varepsilon_L(relabel\ t :: Labeled\ H\ \tau) = relabel\ \varepsilon'_L(t :: Labeled\ L\ \tau) \), for some suitable \(\varepsilon'_L \) that exhibits the desired behavior, e.g., \(\varepsilon'_L(Labeled\ 42 :: Labeled\ L\ Int) = Labeled\ • \). Alas, while this definition respects simulation for step [RELABEL2], introducing a different erasure function in a context-sensitive way is fatal for simulation of beta reductions. More precisely, the original erasure function is no longer homomorphic over substitution, i.e., \(\varepsilon_L([x / t_1] t_2) \neq [x / \varepsilon_L(t_1)] \varepsilon_L(t_2) \)—an essential property of the erasure function (Li and Zdancewic 2010; Russo et al. 2008; Stefan et al. 2011b; 2012b; Heule et al. 2015), without which step [BETA] does not commute anymore. Essentially, function \(\varepsilon_L \) is oblivious to the context in which some term will be substituted inside the body of a function, thus breaking simulation. As a counterexample, consider term \((\lambda x. relabel\ x)\ t \), which is erased homomorphically, that is \((\lambda x. relabel\ x)\ \varepsilon_L(t) \), and then beta-reduces on the orange path to \(relabel\ \varepsilon_L(t) \). On the cyan path term \((\lambda x. relabel\ x)\ t \) beta-reduces to \(relabel\ t \) and then is context-
We evaluate our characterization of schedulers by formalizing a round-robin scheduler what are the sufficient requirements of a scheduler to guarantee PSNI in our calculus. For this reason, we study the proof parametric in the scheduler state and its semantics. For this reason, we study the proof parametric in the scheduler state and its semantics. For this reason, we study the proof parametric in the scheduler state and its semantics.

10.2. Scheduler Requirements

We take advantage of the level of abstraction of our concurrent semantics and make our proof parametric in the scheduler state and its semantics. For this reason, we study the what are the sufficient requirements of a scheduler to guarantee PSNI in our calculus. We evaluate our characterization of schedulers by formalizing a round-robin sched-

In our conference version (Vassena et al., 2016), rule \([\langle \ast \rangle_3]\) raises a problem also for public labeled values, because the erasure function is not homomorphic over function application, in particular \(\varepsilon_L(t_1, t_2 :: MAC H \tau) = \bullet \neq \varepsilon_L(t_1) \varepsilon_L(t_2)\). To avoid this problem, we replace function application with substitution, i.e., \((\text{Labeled } (\lambda x. t_1)) \langle \ast \rangle (\text{Labeled } t_2) \leadsto \text{Labeled } (t_1 [x / t_2])\), at the price of having a non-standard stricter semantics for \(\langle \ast \rangle\). The erasure function presented here is homomorphic over function application and the semantics of \(\langle \ast \rangle\) is standard.

\(\bullet\) is standard.

In our conference version (Vassena et al., 2016), rule \([\langle \ast \rangle_3]\) raises a problem also for public labeled values, because the erasure function is not homomorphic over function application, in particular \(\varepsilon_L(t_1, t_2 :: MAC H \tau) = \bullet \neq \varepsilon_L(t_1) \varepsilon_L(t_2)\). To avoid this problem, we replace function application with substitution, i.e., \((\text{Labeled } (\lambda x. t_1)) \langle \ast \rangle (\text{Labeled } t_2) \leadsto \text{Labeled } (t_1 [x / t_2])\), at the price of having a non-standard stricter semantics for \(\langle \ast \rangle\). The erasure function presented here is homomorphic over function application and the semantics of \(\langle \ast \rangle\) is standard.
uler, similar to that used by GHC’s run-time system (Marlow, 2013), and show that it satisfies the requirements listed in this section.

Our proof is valid for schedulers which are (i) deterministic, (ii) fulfill a restricted variant of single-step simulation from Figure 22, i.e., schedulers may not leverage on sensitive information to determine what observable thread should be scheduled next, (iii) do not leak secret information when scheduling a sensitive threads and (iv) guarantee progress of observable threads, i.e., execution of observable threads cannot be indefinitely deferred by sensitive ones. In the following, we use labels \(\ell_L \) and \(\ell_H \) to denote a security level that is visible resp. invisible to the attacker, i.e., \(\ell_L \subseteq \ell_A \) and \(\ell_H \not\subseteq \ell_A \). Furthermore, we call a scheduler step that runs a non-sensitive thread, e.g., \(\omega_1 \xrightarrow{(\ell, n, e)} \omega_2 \), public or low step. Similarly we refer to a run of a sensitive thread, e.g., \(\omega_1 \xrightarrow{(\ell, n, e)} \omega_2 \), as secret or high step. We formally characterize schedulers for which our security guarantees apply.

Requirement 1.

i) Determinancy: if \(\omega_1 \xrightarrow{(\ell, n, e)} \omega_2 \) and \(\omega_1 \xrightarrow{(\ell', n', e)} \omega_2' \), then \(\ell \equiv \ell' \), \(n \equiv n' \) and \(\omega_2 \equiv \omega_2' \).

ii) Restricted Simulation: if \(\omega_1 \xrightarrow{(\ell, n, e)} \omega_2 \) then \(\varepsilon_{\ell_A}(\omega_1) \xrightarrow{(\ell, n, \varepsilon_{\ell_A}(e))} \varepsilon_{\ell_A}(\omega_2) \).

iii) No Observable Effect: if \(\omega_1 \xrightarrow{(\ell, n, e)} \omega_2 \) then \(\omega_1 \equiv_{\ell_A} \omega_2 \).

iv) Progress: If \(\omega_1 \xrightarrow{(\ell, n, e)} \omega'_1 \) and \(\omega_1 \equiv_{\ell_A} \omega_2 \) then \(\omega_2 \) will schedule thread \((\ell_L, n) \) eventually.

Observe that determinancy of the scheduler is essential for determinancy of the concurrent semantics—after all, the scheduler state is part of the concurrent configuration. As it is expected from the concurrent calculus, we assume that the abstract scheduler satisfies a variant of the single-step simulation restricted to low steps \(^{22} \). “No observable effect”, i.e., Requirement (iii), ensures that high steps do not leak sensitive information in the scheduler state—we extend \(\ell_A \)-equivalence to scheduler states, that is \(\omega_1 \equiv_{\ell_A} \omega_2 \) if and only if \(\varepsilon_{\ell_A}(\omega_1) \equiv \varepsilon_{\ell_A}(\omega_2) \). Observe that the erasure function of the scheduler state is scheduler specific, and thus we leave it unspecified. Requirement (iv) avoids revealing sensitive data by observing progress of non-sensitive threads via public events. Intuitively, a concurrent program might reveal sensitive information by forcing a sensitive thread to induce starvation of a non-sensitive thread, thus potentially suppressing subsequent public events. The formal definition of eventually is technically interesting. Since we wish to make our proof modular, our model is parametric in the scheduler, which is considered in isolation from the thread pool. In this situation, we cannot predict how long the high threads are going to run, because the scheduler is decoupled from the thread pool. We overcome this technicality by indexing the \(\ell_A \)-equivalence relation between scheduler states. We then use the indexes to encode a

\(^{22}\)Different to our conference version (Vassena and Russo, 2016), we do not require lock-step simulation for high scheduler steps, i.e., when \(\ell_H \not\subseteq \ell_A \), for which is instead sufficient to show indistinguishability. This choice gives the same security guarantees and simplifies the formalization of a non-interfering scheduler.
The relation $\omega_1 \approx_{\ell_A}^{(i,j)} \omega_2$ captures an alignment measure of two ℓ_A-equivalent states and how close they are to schedule the next common non-sensitive thread. Informally, our noninterference proof excludes starvation of observable threads, that can leak information to the attacker, by ensuring that two ℓ_A-equivalent schedulers will eventually align and schedule the same non-sensitive thread, regardless of how the global configuration evolves. Specifically, our calculus requires that the indexes in $\omega_1 \approx_{\ell_A}^{(i,j)} \omega_2$ strictly decreases after every reduction. We capture the interplay between the (i,j)-ℓ_A-equivalent relationship and the evolution of schedulers by establishing unwinding-like conditions (Goguen and Meseguer, 1984).

Requirement 2 (Progress). Given $\omega_1 \xrightarrow{(\ell_i, n, e)} \omega'_1$, and $\omega_1 \approx_{\ell_A}^{(i,j)} \omega_2$ then:

- If $j = 0$, then $\forall e' \exists \omega'_2: \omega_2 \xrightarrow{(\ell_i, n, e')} \omega'_2$.
- If $j > 0$, then there exists $\ell_{H_{n'}}$ such that $\forall e' \exists \omega'_2: \omega_2 \xrightarrow{(\ell_{H_{n'}}, n', e')} \omega'_2$.

If a scheduler runs a public thread, then a (i,j)-ℓ_A-equivalent scheduler runs at most j secret threads before the same public thread. In particular, if $j = 0$ then the two schedules align and the threads generate ℓ_A-equivalent events23, otherwise a secret thread is run ($j > 0$). In the second case the scheduler cannot predict what event will be triggered by thread $(\ell_{H_{n'}}, n')$, therefore, as a conservative approximation, the step may involve any possible event e', which in addition determines the final state ω'_2. Conceptually, by repeatedly applying Requirement2 Requirement (iii) and by transitivity of \approx_{ℓ_A}, we could build the chain of high steps that precedes the common low-step. However, this recursion scheme is not well founded in general, because it does not exclude starvation, e.g., for non-preemptive schedulers (Heule et al., 2015).

The following requirement guarantees instead that such chain is finite, i.e., that public threads cannot starve indefinitely due to secret threads.

Requirement 3 (No Starvation). Given $\omega_1 \xrightarrow{(\ell_i, n, e)} \omega'_1$, $\omega_2 \xrightarrow{(\ell_{H_{n'}}, n', e')} \omega'_2$, such that $\omega_1 \approx_{\ell_A}^{(i,j)} \omega_2$, then there exist j' such that $j' < j$ and $\omega'_1 \approx_{\ell_A}^{(i,j')} \omega'_2$.

23In our conference version (Vassena and Russo, 2016), the requirement expects the same event ϵ in the other step, which is too strict. Intuitively an event Fork $\ell_{H_{n'}}$ contains a bit of secret information, namely the number n' of secret threads, which could differ in the other run. It follows from restricted simulation, i.e., Requirement2, that the two events are in fact ℓ_A-equivalent, i.e., $\epsilon \equiv_{\ell_A} \epsilon'$, defined as $\epsilon_{\ell_A}(\epsilon') \equiv \epsilon_{\ell_A}(\epsilon)$. Note that ℓ_A-equivalence captures this scenario precisely: Fork $\ell_{H_{n'}}$ \approx_{ℓ_A} Fork $\ell_{H_{n'}}$ ϵ', because $\epsilon_{\ell_A}(\text{Fork } \ell_{H_{n'}}) \equiv \epsilon_{\ell_A}(\text{Fork } \ell_{H_{n'}}) \equiv \text{Step}$.
Intuitively, the combination of Requirement 2 and 3 ensures that the two schedules will align eventually. Figure 44 highlights this intuition. The colored scheduler steps denote running either a secret (red for ℓ_H) or a public (blue for ℓ_L) thread respectively and the dashed line links ℓ_A-equivalent states. Given two initial scheduler states such that ω_0 ≈ (i, j) ℓ_A ω, where ω runs a public thread, progress, i.e., Requirement 2, guarantees that ω_0 steps to ω_1, running a secret thread. By Requirement 3, it follows that ω_1 ≈ (i, j′) ℓ_A ω, where j′ < j. After repeating this mechanism at most j times (j is strictly smaller after each step), we obtain ω_j ≈ (0, 0) ℓ_A ω, from which it follows that ω_j runs the same thread, stepping to ω_j′. We conclude that ω_j′ ≈ ℓ_A ω_j by low-simulation and determinism, i.e., Requirements (i) and (ii).

Definition 3 (Non-interfering Scheduler). A scheduler is non-interfering if it satisfies Requirements 1, 2, and 3.

Round Robin. We show that round-robin fulfills all the requirements and hence is an eligible candidate scheduler for our calculus. Firstly, it is immediately evident from the reductions that round-robin is deterministic, i.e., it fulfills scheduler requirement (i). We define the erasure function to filter out the identifiers of threads non-observable to the attacker, i.e., ε_{ℓ_A}(s) = filter (λ(ℓ, n) → ℓ ⊑ ℓ_A) s. By induction on

\[\vdash (\text{round-robin})\]
the scheduler reduction, it follows that round-robin satisfies restricted simulation, no observable effect, i.e., scheduler requirements (ii) and (iii). Before proving progress Figure 45 defines annotated \(\ell_A \)-equivalence. In particular, if \(\omega_1 \approx^{(0,0)} \omega_2 \) for non-empty states \(\omega_1 \) and \(\omega_2 \), then round-robin will schedule the same low thread in the next reduction. Lastly round-robin is starvation-free because it has a finite time-slot and is preemptive.

Proposition 4 (RR non-interfering). Round-robin is non-interfering.

10.3. Progress-sensitive Noninterference

The proof of progress-sensitive noninterference relies on lemmas similar to those listed in Requirement 1. In the following, we write \(\ell \) to denote that configuration \(\ell \) steps to \(\ell' \) executing thread \((\ell, n) \) and we use \(\ell_L \) and \(\ell_H \) to denote \(\ell_L \subseteq \ell_A \) and \(\ell_H \not\subseteq \ell_A \) respectively. As usual, we write \(\implies^* \) for the reflexive transitive closure of \(\implies \). We write \(\ell \approx_{\ell_A} \) if and only if \(\varepsilon_{\ell_A} (\ell_1) \equiv \varepsilon_{\ell_A} (\ell_2) \), to denote \(\ell_A \)-equivalence between configurations and we lift scheduler annotations, i.e., \(\ell \approx_{\ell_A} \ell' \) if and only if \(\ell_1 \approx_{\ell_A} \ell_2 \) and \(\omega_1 \approx_{\ell_A} \omega_2 \).

Proposition 5.

i) Determinancy: if \(\ell_1 \rightarrow (\ell, n) \ell_2 \) and \(\ell_1 \leftrightarrow \ell_3 \) then \(\ell_2 \equiv \ell_3 \).

ii) Restricted Simulation: if \(\ell_1 \rightarrow_{(\ell_1, n)} \ell_2 \) then \(\varepsilon_{\ell_A} (\ell_1) \rightarrow_{(\ell_1, n)} \varepsilon_{\ell_A} (\ell_2) \).

iii) No Observable Effect: if \(\ell_1 \rightarrow_{(\ell_1, n)} \ell_2 \) then \(\ell_1 \approx_{\ell_A} \ell_2 \).

Using Proposition 5 we show that the concurrent semantics preserves \(\ell_A \)-equivalence.

Proposition 6 (\(\approx_{\ell_A} \) Preservation). If \(\ell_1 \approx_{\ell_A} \ell_2 \) and \(\ell_1 \rightarrow_{(\ell, n)} \ell_1' \), then

- If \(\ell \not\subseteq \ell_A \), then \(\ell_1' \approx_{\ell_A} \ell_2 \).

- If \(\ell \subseteq \ell_A \), then \(\ell_2 \rightarrow_{(\ell, n)} \ell_2' \), then \(\ell_1' \approx_{\ell_A} \ell_2' \).

Progress sensitive noninterference requires to prove that \(\ell_A \)-equivalence is preserved between two \(\ell_A \)-equivalent configurations, even if only one steps. When a secret thread steps, the theorem follows easily by Proposition 6 and transitivity. The interesting case of the proof consists in showing progress of a public thread, which is simulated by the execution of multiple high threads followed by the same public thread, which corresponds to the diagram in Figure 44. Intuitively we prove progress by firstly simulating the secret threads that precede the public thread in the schedule (scheduler progress), then by simulating the common public thread under erasure (restricted simulation) and lastly reconstructing from the erased step the original step in the other public thread. Before proving this proposition, we have to restrict configurations \(\ell_1 \) and \(\ell_2 \) to be valid—we explain why we need this assumption later on.

Definition 4 (Valid Configuration). A concurrent configuration \(\ell \) is valid if and only if it does not contain any invalid memory reference, node \(\bullet \) and terms \texttt{new} \(\bullet \), \texttt{write} \(\bullet \), \texttt{fork} \(\bullet \), \texttt{fmap} \(\bullet \), \texttt{(+)\bullet \), \texttt{relabel} \(\bullet \).
Assuming valid configurations, we can prove 1-Step simulation, i.e., the reconstruction of the other public step.

Proposition 7 (1-Step Progress). If \(c_1 \approx_{L_A}^{(t,0)} c_2 \), \(c_1 \hookrightarrow_{(t_L, n)} c'_1 \) and \(c_2 \) is valid, then there exists \(c_2' \) such that \(c_2 \hookrightarrow_{(t_L, n)} c_2' \).

The diagram in Figure 46 shows our proof technique. Since the initial configurations are \(L_A \)-equivalent, i.e., \(c_1 \approx_{L_A}^{(t,0)} c_2 \), then the erased initial configurations are equivalent, i.e., \(\varepsilon_{L_A}(c_1) \equiv \varepsilon_{L_A}(c_2) \). Furthermore, since the schedulers in \(c_1 \) and \(c_2 \) are aligned (the second index in the annotated \(L_A \)-equivalence is 0), the fact that the first scheduler runs thread \((t_L, n) \), implies that the second runs it as well (Proposition 3). Given \(c_1 \hookrightarrow_{(t_L, n)} c'_1 \) we obtain the erased reduction step \(\varepsilon_{L_A}(c_1) \hookrightarrow_{(t_L, m)} \varepsilon_{L_A}(c'_1) \), by restricted simulation and we then reconstruct \(c'_2 \) and the other step \(c_2 \hookrightarrow_{(t_L, n)} c'_2 \) from the step \(\varepsilon_{L_A}(c_1) \hookrightarrow_{(t_L, m)} \varepsilon_{L_A}(c'_1) \), \(\varepsilon_{L_A}(c_1) \equiv \varepsilon_{L_A}(c_2) \) and the assumption that \(c_1 \) and \(c_2 \) are valid.

Validity. We explain by means of an example why we need to assume that the configurations \(c_1 \) and \(c_2 \) are valid. The fact that non-sensitive threads can write to sensitive resources, such as memories, complicates the reconstruction of a non-erased reduction step from an erased one, because, intuitively, too much information has been erased. For instance, since the erasure function rewrites secret memories and addresses to \(\bullet \), we need to assume that the other program is in a “consistent state” in order to replay sensitive read/write memory-operations. Concretely, consider a public thread performing a secret write, i.e., \((\Sigma, \text{write } (\text{Ref } n) \ t) \rightarrow (\Sigma(\ell_H)[n] := t, \text{return } () \) \). A low-equivalent program will be \((\Sigma', \text{write } (\text{Ref } n') \ t') \), for some store \(\Sigma' \), address \(n' \) and term \(t' \) such that \(\Sigma \approx_{L_A} \Sigma' \), \(\text{Ref } n \approx_{L_A} \text{Ref } n' \) and \(t \approx_{L_A} t' \). Unfortunately, there is no guarantee that \(n' \) is a valid address in memory \(\Sigma'(\ell_H) \). Observe that the erasure function maps is non-injective: it maps both valid and invalid references to \(\text{Ref } \bullet \), therefore knowing that \(n \) is defined in \(\Sigma'(\ell_H) \) does not guarantee that \(n' \) is valid in \(\Sigma'(\ell_H) \). Before proving progress, we show that our semantics preserves validity.
Proposition 8 (Valid Preservation). If \(c_1 \) is valid and \(c_1 \not\rightarrow c_2 \) then \(c_2 \) is valid.

Proposition 9 (Progress). If \(c_1 \approx^{(j,i)} \) \(c_2 \), \(c_1 \not\rightarrow{\ell, n} c'_1 \), and \(c_1, c_2 \) are valid configurations, then there exists \(c'_2 \) and \(c''_2 \) such that \(c_2 \not\rightarrow^* c'_2 \not\rightarrow{\ell, n} c''_2 \).

Proof (Sketch). The proof is driven by scheduler progress, i.e. Requirement\(^2 \) which determines what thread is scheduled next.

\((j > 0) \) The scheduler runs a secret thread, which is executed leading to the next intermediate configuration \(c'_2 \), i.e. \(c_2 \not\rightarrow{\ell_a, n'} c'_2 \). By no starvation, i.e., Requirement\(^3 \) and no observable effect, i.e. Proposition\(^5\)III it follows that \(c_1 \approx^{(j,i)'} \) \(c'_2 \) for some \(j' < j \) and we then apply induction.

\((j = 0) \) The scheduler runs public thread \((\ell_L, n) \) and the proposition follows from Proposition\(^7 \).

By combining progress, i.e., Proposition\(^9 \) and \(\ell_A \)-equivalence preservation, i.e., Proposition\(^6 \) we prove PSNI.

Theorem 2 (Progress-sensitive noninterference). Given valid global configurations \(c_1, c'_1, c_2 \), and a non-interfering scheduler, if \(c_1 \approx_{\ell_A} c_2 \) and \(c_1 \not\rightarrow c'_1 \), then there exists \(c'_2 \) such that \(c_2 \not\rightarrow^* c'_2 \) and \(c_2 \approx_{\ell_A} c''_2 \).

We conclude with a corollary that asserts that MAC satisfies PSNI.

Corollary 1. MAC satisfies PSNI.

Proof. By applying Theorem\(^2 \) and Proposition\(^4 \).

11. Related work

Mechanized Proofs. Russo presents the library MAC as a functional pearl and relies on its simplicity to convince readers about its correctness [Russo 2015]. This work bridges the gap on MAC’s lack of formal guarantees and exhibits interesting insights on the proofs of its soundness. LIO is a library structurally similar to MAC but dynamically enforcing IFC [Stefan et al. 2011b]. The core calculus of LIO, i.e., side-effect free computations together with exception handling, has been modeled in the Coq proof assistant [Stefan et al. 2012b]. Different from our work, these mechanized proofs do not simplify the treatment of sensitive exceptions by masking them in erased programs. In parallel to [Stefan et al. 2012b], Breeze [Hritcu et al. 2013] is a pure programming language that explores the design space of IFC and exceptions, which is accompanied with mechanized proofs in Coq. Bichhawat et al. develop an intra-procedural analysis for Javascript bytecode, which prevents implicit leaks in presence of exceptions and unstructured control flow constructs [Bichhawat et al. 2014].
Parametricity. Parametric polymorphism prevents a polymorphic function from inspecting its argument. In a similar manner, a non-interferent program cannot change its observable behaviour depending on the secret. Researchers have explored further this deep and subtle connection by obtaining a translation from DCC (Abadi et al., 1999) to System F in order to leverage on parametricity (Tse and Zdancewic, 2004). Shikuma and Igarashi (Shikuma and Igarashi, 2006) points out an error on such translation and gives a counterexample of a leaked translation. Recently, Bowman and Ahmed (Bowman and Ahmed, 2015) provide a sound translation from DCC into System F.

Concurrency. Considering IFC for a general scheduler could lead to refinements attacks. In this light, Russo and Sabelfeld provide termination-insensitive noninterference for a wide-class of deterministic schedulers (Russo and Sabelfeld, 2006a). Barthe et al. adopt this idea for Java-like bytecode (Barthe et al., 2009). Although we also consider deterministic schedulers, our security guarantees are stronger by considering leaks of information via abnormal termination. Heule et al. describe how to retrofit IFC in a programming language with sandboxes (Heule et al., 2015). Similar to our work, their soundness proofs are parametric on deterministic schedulers and provide progress-sensitive noninterference with informal arguments regarding thread progress—in this work, we spell out formal requirements on schedulers capable to guarantee thread progress. A series of work for π-calculus consider non-deterministic schedulers while providing progress-sensitive noninterference with informal arguments regarding thread progress—in this work, we spell out formal requirements on schedulers capable to guarantee thread progress. A series of work for π-calculus consider non-deterministic schedulers while providing progress-sensitive noninterference with informal arguments regarding thread progress—in this work, we spell out formal requirements on schedulers capable to guarantee thread progress. A series of work for π-calculus consider non-deterministic schedulers while providing progress-sensitive noninterference with informal arguments regarding thread progress—in this work, we spell out formal requirements on schedulers capable to guarantee thread progress. A series of work for π-calculus consider non-deterministic schedulers while providing progress-sensitive noninterference with informal arguments regarding thread progress—in this work, we spell out formal requirements on schedulers capable to guarantee thread progress. A series of work for π-calculus consider non-deterministic schedulers while providing progress-sensitive noninterference with informal arguments regarding thread progress—in this work, we spell out formal requirements on schedulers capable to guarantee thread progress. A series of work for π-calculus consider non-deterministic schedulers while providing progress-sensitive noninterference with informal arguments regarding thread progress—in this work, we spell out formal requirements on schedulers capable to guarantee thread progress. A series of work for π-calculus consider non-deterministic schedulers while providing progress-sensitive noninterference with informal arguments regarding thread progress—in this work, we spell out formal requirements on schedulers capable to guarantee thread progress.

Security Libraries. Li and Zdancewic’s seminal work (Li and Zdancewic, 2006) shows how the structure arrows can provide IFC as a library in Haskell. Tsai et al. extend that work to support concurrency and data with heterogeneous labels (Tsai et al., 2007). Russo et al. implement the security library SecLib using a simpler structure than arrows (Russo et al., 2008), i.e. monads—rather than labeled values, this work introduces a monad which statically label side-effect free values. The security library LIO (Stefan et al., 2011a, 2012a) enforces IFC for both sequential and concurrent settings dynamically. LIO presents operations similar to fmap and (*) for labeled values with differences in the returning type due to LIO’s checks for clearance—this work provides a foundation to analyze the security implications of such primitives. Mechanized proofs for LIO are given only for its core sequential calculus (Stefan et al., 2011a). Inspired by SecLib and LIO’s designs, MAC leverages Haskell’s type system to enforce IFC (Russo, 2015) statically. Unlike LIO, data-dependent security policies cannot be expressed in MAC, due to its static nature. This limitation is addressed by HLIO, which provides a hybrid approach by means of some advanced Haskell’s type-system features: IFC is statically enforced while allowing the programmers to defer selected security checks until run-time (Buiras et al., 2015). Several works have also inves-
tigated the use of dependent types to precisely capture the nature of data-dependent security policies (Lourenço and Caires 2015; Murray et al. 2016; Nanevski et al. 2011; Morgenstern and Licata 2010).

Our work studies the security implications of extending LIO, MAC, and HLIO with a rich structure for labeled values. Devriese and Piessens provide a monad transformer to extend imperative-like APIs with support for IFC in Haskell (Devriese and Piessens 2011). Jaskelioff and Russo implements a library which dynamically enforces IFC using secure multi-execution (SME) (Jaskelioff and Russo 2011)—a technique that runs programs multiple times (once per security level) and varies the semantics of inputs and outputs to protect confidentiality. Rather than running multiple copies of a program, Schmitz et al. provide a library with faceted values (Schmitz et al. 2016), where values present different behavior according to the privilege of the observer. Different from the work above, we present a fully-fledged mechanized proof for our sequential and concurrent calculus which includes references, synchronization variables, and exceptions.

IFC Tools. IFC research has produced compilers capable of preserving confidentiality of data: Jif (Myers et al. 2001) and Paragon (Broberg et al. 2013) (based on Java), and FlowCaml (Simonet 2003) (based on Caml). The SPARK language presents an IFC analysis which has been extended to guarantee progress-sensitive non-inference (Rafnsson et al. 2016). JSFlow (Hedin et al. 2014) is one of the state-of-the-art IFC system for the web (based on JavaScript). These tools preserve confidentiality in a fine-grained fashion where every piece of data is explicitly label. Specifically, there is no abstract data type to label data, so our results cannot directly apply to them.

Operating Systems. MAC borrows ideas from Mandatory Access Control (MAC) (Bell and La Padula 1976; Biba, 1977) and phrases them into a programming language setting. Although originated in the 70s, there are modern manifestations of this idea (Zeldovich et al. 2006; Krohn et al. 2007; Murray et al. 2013), applied to diverse scenarios, like the web (Stefan et al. 2014; Bauer et al. 2015) and mobile devices (Jia et al. 2013; Bugiel et al. 2013). Due to its complexity, it is not surprising that OS-based MAC systems lack accompanying soundness guarantees or mechanized proofs—seL4 being the exception (Murray et al. 2013). The level of abstractions handled by MAC and OSes are quite different, thus making uncertain how our insights could help to formalize OS-based MAC systems. MAC systems (Bell and La Padula 1976) assign a label with an entire OS process—settling a single policy for all the data handled by it. In principle, it would be possible to extend such MAC-like systems to include a notion of labeled values with the functor structure as well as the relabeling primitive proposed by this work. For instance, COWL (Stefan et al. 2014) presents the notion of labeled blob and labeled XHR which is isomorphic to the notion of labeled values, thus making possible to apply our results. Furthermore, because many MAC-like system often ignore termination leaks (Efstathopoulos et al. 2005; Zeldovich et al. 2006), there is no need to use call-by-name evaluation to obtain security guarantees.
12. Conclusion

We present a full-fledged formalization of MAC in Agda, where noninterference is proven by term erasure. To the best of our knowledge, this is the first work of its kind for IFC libraries in Haskell, both for completeness and number of features included in the model. Thanks to our mechanized proofs, we identify challenges arising from erasing terms depending on the context where they appear and propose two-steps erasure—an effective technique to systematically deal with such cases. We present an extension of MAC that provides labeled values with an applicative functor-like structure and a relabeling operation, enabling convenient and expressive manipulation of labeled values using side effect-free code and saving programmers from introducing unnecessary sub-computations, e.g., forking a thread. We have proved this extension secure both in sequential and concurrent settings, using two-steps erasure. This work bridges the gap between existing IFC libraries (which focus on side-effecting code) and the usual Haskell programming model (which favors pure code), with a view to making IFC in Haskell more practical. Our mechanized proofs also make explicit sufficient scheduler requirements to guarantee PSNI—something that has been only treated informally before [Stefan et al. 2012a, Heule et al. 2015]. As a result, our security proofs for the concurrent calculus are valid for a wide-range of deterministic schedulers. It is our hope that the insights gained by this work will help to formally verify other IFC programming languages.

References

Appendix A. Flexible Labeled Values in Sequential Calculus

In this section, we extend the semantics of flexible labeled values described in Section 9 for the sequential setting, where labeled values have an additional constructor, namely Labeled_χ. This constructor is used to prevent sensitive exceptions from leaking into a non-sensitive context, when embedding a secret computation in a public one using join. The semantics of the primitives relabel and $\langle * \rangle$ handle exceptional values, by propagating the exceptions, which is exactly what happens in rule $[\text{RELabel}_\chi]$—see Figure A.47. Rule $[\text{RELabel}_\bullet]$ simulates rule $[\text{RELabel}_\chi]$ in the sequential setting, specifically when a public exceptional labeled value gets relabeled with a sensitive label (note that the resulting erased, i.e., Labeled_\bullet, is sensitive and contains no exception). Rules $[(\langle * \rangle)_1], [(\langle * \rangle)_2], [(\langle * \rangle)_3], [(\langle * \rangle)_4]$ yield (propagate) the first exception observed when $\langle * \rangle$ is applied to exceptional values. In particular, rule $[(\langle * \rangle)_3]$ applies when both arguments are exceptions and returns the first one triggered during evaluation, i.e., the left one. Rules $[(\langle * \rangle)_1], [(\langle * \rangle)_2], [(\langle * \rangle)_3]$ are somewhat unusual. In particular, even though our language is non-strict, the rules give a strict semantics to $\langle * \rangle$—note that they reduce unnecessarily the second term, even though it is not used in the final result. It would have been more natural, in this context, to replace them by a single rule $\text{Labeled}_\chi \ t_1 \langle * \rangle \ t_2 \rightsquigarrow \text{Labeled}_\chi \ t_1$, that does not evaluate the second term. The two alternative semantics are equivalent, except for abnormal non-terminating terms, that we denote with \bot. With strict semantics, the term $\text{Labeled}_\chi \ t_1 \langle * \rangle \bot$ results in \bot, because it loops due to rule $[(\langle * \rangle)_1]$, instead it terminates with a non-strict semantics, i.e., $\text{Labeled}_\chi \ t_1 \langle * \rangle \bot \rightsquigarrow \text{Labeled}_\chi \ t_1$. We remark that the two semantics are equivalent for terminating programs and therefore security is not at stake:
the sequential calculus is already termination insensitive. Technically, we give a strict definition of \((\ast)\), because erasing sensitive exceptions are replaced by non-exceptional values, i.e., \(\varepsilon_L(Labeled_\chi \ell_1 :: Labeled H \tau) = Labeled \bullet\). Therefore, we could not prove simulation for a non-strict applicative functor, since, crucially, it is sensitive to exceptions. While these behaviour could be simulated by an erasure function that preserves sensitive exceptions, i.e., \(\varepsilon_L(Labeled_\chi \tau :: Labeled H \tau) = Labeled_\chi \bullet\), it is an open question how to prove single-step simulation for \(\text{join}\), specifically for rules [JOIN,JOIN_\chi].

Appendix B. Synchronization Primitives

In this section we extend our calculus with synchronization primitives, an essential feature for concurrent programs. Using synchronized mutable variables (\(MVar\)) users can implement simple inter-thread communication mechanisms such as binary semaphores and channels.

The type \(MVar \ell \tau\) denotes a labeled mutable location that is either empty or full and contains a term of type \(\tau\) of security level \(\tau\). Figure B.48 shows the API of basic synchronization primitives, based on \(MVar\). Specifically, function \(\text{newMVar}\) creates an empty \(MVar\). Function \(\text{takeMVar}\) empties a full \(MVar\) and returns its content or blocks otherwise. Function \(\text{putMVar}\) fills an empty \(MVar\) or blocks otherwise. Primitive \(\text{newMVar}\) performs a write operation, therefore its type is restricted to comply with the no write-down policy, just like the type of \(\text{new}\) for memory. Interestingly, and unlike memory primitives \(\text{read}\) and \(\text{write}\), the type of \(\text{takeMVar}\) and \(\text{putMVar}\) accepts only one security level. Intuitively, that is the case because \(MVar\)’s primitives perform both read and write side-effects, therefore both no read-up and no write-down security policies apply. For instance, to execute \(\text{putMVar}\), it is necessary to observe (read) if the \(MVar\) is empty. We show how those security policy guide our design and lead us to give the API shown in Figure B.48 as the only secure option. Assume that primitive \(\text{takeMVar}\) had a completely unrestricted type, i.e., \(\forall \ell_1 \ell_2 . MVar \ell_1 \tau \rightarrow MAC \ell_2 \tau\). Since \(\text{takeMVar}\) returns the content of the \(MVar\)—a read effect that is secure only if \(\ell_2\) is at least as sensitive as \(\ell_1\), i.e., \(\ell_1 \subseteq \ell_2\). Observe however that \(\text{takeMVar}\) empties the \(MVar\) as well, after returning its content—a write effect that is secure only if \(\ell_1\) is at least as sensitive as \(\ell_2\), i.e., \(\ell_2 \subseteq \ell_1\). By the antisymmetry of the security lattice, it follows that the interaction between computations and synchronization variables is secure only when they have the same security level, i.e., \(\ell_1 \equiv \ell_2\). The same principle applies for \(\text{putMVar}\).

\begin{verbatim}
data MVar \ell \tau
newMVar :: \ell_L \subseteq \ell_H \Rightarrow MAC \ell_L (MVar \ell_H \tau)
takeMVar :: MVar \ell \tau \rightarrow MAC \ell \tau
putMVar :: MVar \ell \tau \rightarrow \tau \rightarrow MAC \ell ()
\end{verbatim}

Figure B.48: API of synchronization primitives.

55
Appendix B.1. Calculus

Figure B.49 extends the concurrent calculus with synchronization primitives. A synchronization variable is represented as a value $MVar\ n :: MVar\ \ell\ \tau$ where n is an address pointing to the n-th cell of the ℓ-memory, which contains a term of type τ.

We adjust our memory model to work with synchronization variables. We introduce a new syntactic category, memory cell c, which can be either empty, i.e., \otimes, or full with some term t, i.e., $[t]$. Rule [NEWMVAR] evaluates term $newMVar$ by adding an empty memory cell to the ℓ-labeled memory, i.e., $\Sigma(\ell)[n] := \otimes$ and returning a reference to it, i.e., $MVar\ n$. Rule [PUTMVAR1] evaluates the reference and rule [PUTMVAR2]

25In MAC a $MVar$ is just a wrapper around unlabeled synchronization variables from the standard library. Here we denote synchronization variables as an index, just like we did for memory references.

26We model mutable references as a special case of synchronization variables that are always full.
\[\varepsilon_{\ell_A}(\otimes) = \otimes \quad \varepsilon_{\ell_A}([t]) = [\varepsilon_{\ell_A}(t)] \]

(a) Erasure for memory cells.

\[
\varepsilon_{\ell_A}(newMVar :: MAC \ell_k (MVar \ell_H \tau)) = \begin{cases}
newMVar \bullet & \text{if } \ell_H \npreceq \ell_A \\
newMVar & \text{otherwise}
\end{cases}
\]

\[
\varepsilon_{\ell_A}(MVar n :: MVar \ell_H \tau) = \begin{cases}
MVar \bullet & \text{if } \ell_H \npreceq \ell_A \\
MVar n & \text{otherwise}
\end{cases}
\]

(b) Erasure for newMVar and MVar.

Figure B.50: Erasure function for memory cells and synchronization primitives.

fills the empty cell it refers to with the term, i.e., \(\Sigma(\ell)[n] := [t] \) and returns unit. Rule \([\text{TakeMVAR}_1]\) evaluates the reference and rule \([\text{TakeMVAR}_2]\) returns the content of the non-empty cell it refers to, i.e., \(\Sigma(\ell)[n] = [t] \) for some term \(t \), and empties it, i.e., \(\Sigma(\ell)[n] := \otimes \). Observe that the premise of rules \([\text{PutMVAR}_2]\) and \([\text{TakeMVAR}_2]\) accounts for the blocking behavior of the synchronization primitives by making the configuration stuck. In particular, primitive \(\text{putMVAR} \) blocks if the cell is non-empty, i.e., \(\langle \Sigma, \text{putMVAR} (MVar n) t \rangle \not\rightarrow \) if \(\Sigma(\ell)[n] \not\equiv \otimes \) and similarly \(\text{takeMVAR} \) blocks if the cell is empty, i.e., \(\langle \Sigma, \text{takeMVAR} (MVar n) \rangle \not\rightarrow \) if \(\Sigma(\ell)[n] \equiv \otimes \).

Appendix B.2. Erasure Function

Proving that synchronization primitives are secure is straightforward in our setting. The primitives are clearly deterministic and showing single-step simulation is simpler than for references because primitives \(\text{putMVAR} \) and \(\text{takeMVAR} \) work within the same security level. Memory cells are erased homomorphically (Figure B.50a). Applying the two-steps erasure technique, the erasure function replaces term \(\text{newMVAR} \) with \(\text{newMVAR} \bullet \), when it creates a sensitive synchronization variable—see Figure B.50b.

The erasure function rewrites the address of a synchronization reference to \(\bullet \) if it points to a sensitive memory. Figure B.51 shows rule \([\text{NewMVAR} \bullet] \), which reduces term \(\text{newMVAR} \bullet \), returns a dummy reference, i.e., \(\text{MVar} \bullet \), and skips the write effect, leaving the store \(\Sigma \) unchanged. Observe that we do not need to replace \(\text{takeMVAR} \) with a special term \(\text{takeMVAR} \bullet \), because the primitive can only write to a memory at the same security level as the computation, therefore either they are both sensitive and the computation rewritten to \(\bullet \) or both non-sensitive and erased homomorphically.
Appendix C. Typing Rules

Figure C.52 gives the typing rules for the extended calculus, i.e., term \bullet and other \bullet-annotated terms used when applying two-steps erasure. The special term \bullet can assume any type thanks to the typing rule [HOLE]. The typing rule of each \bullet-annotated term corresponds exactly to the typing rule of the unannotated terms. As a consequence of these typing rules, the erasure function is type-preserving, i.e., if $\Gamma \vdash t : \tau$ then $\varepsilon_{\ell_{A}}(\Gamma) \vdash \varepsilon_{\ell_{A}}(t) : \tau$.
Figure C.52: Typing rules for the extended calculus.

(HOLE) \[\Gamma \vdash \bullet : \tau \]

\[
\frac{\ell_L \subseteq \ell_H \quad \Gamma \vdash t : \tau}{\Gamma \vdash new\bullet : MAC \ell_L (Ref \ell_H \tau)}
\]

(WRITE\bullet) \[\ell_L \subseteq \ell_H \quad \Gamma \vdash t_1 : \tau \quad \Gamma \vdash Ref \ell_H \tau\]

\[
\frac{}{\Gamma \vdash write\bullet (t_1 \ t_2) : MAC \ell_L (t_2)}
\]

(JOIN\bullet) \[\ell_L \subseteq \ell_H \quad \Gamma \vdash t : MAC \ell_H \tau\]

\[
\frac{}{\Gamma \vdash join\bullet (t_1 \ t_2) : MAC \ell_L (Labeled \ell_H \tau)}
\]

(FORK\bullet) \[\ell_L \subseteq \ell_H \quad \Gamma \vdash t : MAC \ell_H ()\]

\[
\frac{}{\Gamma \vdash fork\bullet (t) : MAC \ell_L ()}
\]

(FMAP\bullet) \[\Gamma \vdash t_1 : \tau_1 \to \tau_2 \quad \Gamma \vdash t_2 : (Labeled \ell \tau_1)\]

\[
\frac{}{\Gamma \vdash fmap\bullet (t_1 \ t_2) : Labeled \ell \tau_2}
\]

((\ast)\bullet) \[\Gamma \vdash t_1 : Labeled \ell (\tau_1 \to \tau_2) \quad \Gamma \vdash t_2 : (Labeled \ell \tau_1)\]

\[
\frac{}{\Gamma \vdash t_1 \ast (t_2) : Labeled \ell \tau_2}
\]

(RELABEL\bullet) \[\ell_L \subseteq \ell_H \quad \Gamma \vdash t : (Labeled \ell_L \tau)\]

\[
\frac{}{\Gamma \vdash relabel\bullet (t) : Labeled \ell_H \tau}
\]

(NEWMVAR\bullet) \[\ell_L \subseteq \ell_H \]

\[
\frac{}{\Gamma \vdash newMVar\bullet : MAC \ell_L (MVar \ell_H \tau)}
\]