Composable Enhancements
for Gradual Assurances

A DISSERTATION PRESENTED
BY
Lucas REep WavE
TO
THE HARVARD JOoHN A. PAULSON SCHOOL OF ENGINEERING AND APPLIED SCIENCES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DocToR oF PHILOSOPHY
IN THE SUBJECT OF
COMPUTER SCIENCE

HARVARD UNIVERSITY
CAMBRIDGE, MASSACHUSETTS

NOVEMBER 2017

©2017 — Lucas REep WAYE
ALL RIGHTS RESERVED.

Dissertation Advisor: Professor Stephen Chong Lucas Reed Waye

Composable Enhancements for Gradual Assurances
ABSTRACT

This dissertation presents three enhancements to software components that increase the trust-
worthiness and usability of the systems they comprise. The enhancements are composable: they are
local to the components they enhance and are self-contained. Since they are self-contained and lo-
cal, composable enhancements can be partially deployed in a system without adversely affecting
system behavior. The assurances provided by the enhancements are gradual: as the number of en-
hanced components in the system increases, the overall assurances provided by the entire system also
increases. This dissertation investigates these enhancements in three different settings. In each set-
ting, it identifies an inherent security or functional correctness problem with the components in that
setting and provides a composable enhancement that remedies the problem gradually.

In the first setting, this dissertation identifies that although modern services expose interfaces
that are higher-order in spirit, the simplicity of the network protocols used forces services to rely
on brittle encodings. To bridge the semantic gap, this dissertation presents Whip, a higher-order
contract system that allows programmers to detect when services do not live up to their advertised
higher-order interfaces. As more services use Whip, it becomes easier to identify errant services in the
system.

In the second setting, this dissertation identifies that in the Disjunction Category label model,
capability-like privileges are used to downgrade information, which when used inappropriately can

iii

Dissertation Advisor: Professor Stephen Chong Lucas Reed Waye

compromise security. To ensure privileges are used as intended, this dissertation presents restricted

privileges, an enhancement to privileges to control downgrading based on a specification of security
conditions for when they can be legitimately used. As more privileges are restricted, information in
the system becomes more protected from the accidental or malicious exercise of privileges to down-
grade more information than intended.

In the third setting, this dissertation identifies that information-flow control (IFC) programs
often need to interact with a key-value store that can also be accessed by non-IFC programs. These
non-IFC programs may inadvertently (or maliciously) fail to respect the policies enforced by the
IFC programs. In order to ensure the information protected by the IFC programs is not exfiltrated
or corrupted by non-IFC programs through the key-value store, this dissertation presents Clio, an
extension to a popular IFC language that transparently incorporates cryptography for data on the
untrustworthy key-value store. As more IFC programs use Clio, the more information is protected

from non-IFC programs in the system.

iv

Contents

Introduction I
Higher-Order Behavioral Contracts for Modern Services 4
2.1 Introduction e 4
2.2 The Whip ContractLanguage 7
2.3 The Whip Runtime, Informally 11
2.4 WhipFormally 19
2.5 CorrectBlame 30
2.6 WhipinPractice L L 32
27 Performance 38
2.8 Relatedwork 40
2.9 Condusion e 41
Background on LIO and DC Labels 42
30 DCLabels e 42
32 LIO . o e 45
Restricted Privileges for Downgrading 50
41 Introduction L. e 50
4.2 Security Definitions L L 52
4.3 Enforcement forrobustprivileges o o 0oL 56
4.4 Interaction among restricted privileges L L L oL 58
4.5 Casestudies e e 61
4.6 RelatedWork e 62
47 Condusion e 64

Cryptographically Secure Information-Flow Control for Key-Value Stores 65

sk Introduction 65
sz Interacting withan Untrusted Store L L L. 68
53 RealizingClio L 73
s.4 FormalProperties L L 78
s.s ClioinPractice e 8s
5.6 RelatedWork 89
5.7 Conclusion 90
Conclusion 92

References 94

A Whip Definitions and Proofs 103
A1 Remaining Definitions L. L L L 104
A2 Complete TheoremsandProofs 105

B Restrictied Privileges Proofs 2

C Clio Definitions and Proofs 115
Ci Remaining Definitions L L Lo 116
C2 Complete Theoremsand Proofs 132

vi

Listing of figures

2.1 Evernote: access toashared notebook L. 7
2.2 TheNoteStore Thrift API 8
2.3 TheNoteStore cONtract v v v v i ittt e e 9
2.4 DiagramofaWhipadapter L II
2.5 Whip-enhanced interaction L L L L L 18
2.6 Core WM syntaxand reductionruleso 0L 20
27 WAMsyntax 21
2.8 WAMsStore syntax 22
2.9 WMreductionrules e 24
210 Lliftand lower metafunctions. 25
21 Stateupdatefunctions. L L Lo 28
2.2 Performancecharts 38
3.1 Confidentiality lattice L L L 42
32 Integritylattice oo o 42
3.3 Security lattice for DClabels o o oo 43
3.4 Downgradingintegrity L L 43
3.5 Downgrading confidendiality o o oL 43
3.6 Relation can-flow-to-with-privilege-p o000 44
3.7 Syntax for LIO values, terms, and types. 46
3.8 LIO language semantics (selected rules). 48
3.9 Availabilitylatdice oo oo 48
41 Boundeddowngrading L L L o 53
42 Robustdeclassification 55
43 Multiplebounds. o oL 58
4.4 Bounded and robust declassification. L. 59
4.5 Bounded endorsement and robust declassification. 6o
s Threatmodel 68
sz Clio language semantics (store and fetchrules). 69
5.3 Adversaryinteractionsand lowsteps Lo oo 72
5.4 RealCliolowstepsemantics. 76
5.5 RealCliosemantics e 78
5.6 Lowequivalence preservation Lo 83
5.7 Taxpreparationcodesamples L Lo 88

vii

To MY LATE MOTHER BARBARA JoAN WAYE
FOR GETTING ME MY FIRST COMPUTER, INSTEAD OF THE GUITAR.

viii

Acknowledgments

The research process broadly seeks to produce new knowledge or deepen the understanding of a
topic. Atits core, it is neither an art nor a science but a non-empirical craft. From its medieval roots,
this craft has been taught through an apprenticeship. I have been fortunate enough to have a master
teach me the craft, my advisor Stephen Chong. Under his guidance I have been able to hone my
research skills as his apprentice through relentless supervised practice. For teaching me the craft, and
in particular the knack of storytelling, I will be forever grateful. Thank you!

The process is not solitary; it is entirely a social endeavor. My committee members Eddie Kohler
and Jim Waldo provided expert feedback on my research and my interactions with them proved to
be invaluable for my research.

Many of these ideas in this dissertation would not have come to fruition without my collabora-
tors. Many thanks to Owen Arden, Pablo Buiras, Christos Dimoulas, Dan King, Alejandro Russo,
Deian Stefan, and Marco Vassena for putting up with me for the betterment of the work.

The members of the Harvard Programming Languages group were great to bounce research ideas
off of and also to talk about anything (and everything). The conversations were always stimulat-
ing and made my time at Harvard much more enjoyable. Thanks Aaron Bembenek, David Darais,
Anitha Gollamudi, Dan Huang, Andrew Johnson, Gregory Malecha, Scott Moore, and Adam
Petcher. And thanks to my friends 7oz in the lab for also being there for me, particularly Eric Buehl,
Gautam Kamath, Weilin Meng, Shane Moriah, Jake Rowley, Tim Sidle, and Peter Smillie.

Thanks to the members of 410 Dryden Rd. for always staying in touch: Maxim Belomestnykh,
Roman Goloborodko, Li Guo, Andy Hirschl, Shane McMorrow, Ryan Musa, and Sasha Naydich.
May your cups be forever filled with foam.

Last, but certainly not least, my family has given me the strength and courage to persevere. I can-
not thank my parents enough for all that they have done, so instead I will attempt to live my life by
the honorable example they have set for me.

Most of all, thanks to the newest part of my family, Katherine Terracciano. Your patience, contin-
ued support, and love has made this all possible. We may have met at the same time I started gradu-

ate school, but unlike graduate school our time together will have no end date.

ix

Introduction

Software development is an increasingly distributed and collaborative effort. Programmers write
components that implement basic functionality and compose them to form large and complicated
software systems. Due to the near-ubiquitous access to the internet and the benefits it provides, in
many cases the mechanism of composition is a network protocol that facilitates inter-component
communication. As a result, the computations and data storage of these software systems are dis-
tributed to geographically remote and untrusted locations.

At the same time, society has increasingly expected more from these online software systems as
they have become more integrated into our world. We rely on them to communicate, perform finan-
cial transactions, learn, and manage our lives. From health care support systems to social networking
web sites, the information handled and produced by these systems have intricate dependencies. Fur-
ther, the data used by these systems often contains sensitive personal, corporate, and government
information.

The expectations on the information used and produced by the systems are encoded in detailed
and complicated requirements, often derived from legislation, industry standards, and organiza-
tional guidelines. These requirements can take the form of information security requirements or
functional correctness requirements. Abstractly, the goal of information security is to ensure that all
computations on information obey a given security policy while functional correctness asserts that
the functional behavior of all computations satisfy a given functional correctness property. Security

policies address the confidentiality, integrity, and availability of data a system uses and produces.

That is, the data is imbued with additional meaning; for example, the data also declares (either ex-
plicitly or implicitly) who may read it. Functional correctness properties address the structure (i.e.,
its data type) and decidable properties on the input and output data of the system.

Some of these properties can be automatically checked in a closed system. For example, security
policies can be automatically enforced by Information-Flow Control (IFC) systems. But even with
precise specifications for these systems, current methodologies for building them provide little assur-
ance that the requirements are satisfied in the presence of untrusted or unvalidated components in
the system. Due to the highly entangled composition of components, insecurity or functional in-
correctness in a single component can lead to system-wide security and functional correctness issues.
The reason for this is that enforcement of these requirements at component boundaries is not clearly
connected to the overall system requirements. Since unvalidated or untrusted components do not
ensure that they interact with the rest of the system in a secure or functionally correct way, the over-
all properties of the system become unclear. As a result, reasoning that a system correctly enforces a
security or functional correctness requirement may require reasoning about all of the components
in the system. In sum, the overall security and functional correctness of the system is in part influ-
enced by the behavior of unvalidated or untrustworthy components in the system.

This work demonstrates how more precise specifications at component boundaries, together
with their enforcement, can help to build more trustworthy and usable systems. Further, this work
provides a clear migration path towards more usable and trustworthy systems by ensuring that the
enforcement of these requirements is self-contained. We achieve this by creating enforcement mech-
anisms that operate on individual components instead of on entire systems. These per-component
enforcement mechanisms serve as the enbancements to the components. Since components can be
independently deployed in large online software systems, a full-scale deployment of the enhance-
ments is often infeasible in practice. Thus, in order to be pragmatic and usable, the enforcement

mechanisms should function under partial deployment.

CoNTRIBUTIONS AND OUTLINE This dissertation presents three enhancements to software com-
ponents that provide gradual information security and functional correctness guarantees. The first
enhancement is a higher-order contract system that allows programmers to detect services that do
not live up to their advertised higher-order interfaces, presented in Chapter 2. In particular, the work
provides a runtime monitor that is composable and practical, as well as a contract language that can
capture many common behavioral properties unique to modern services.

Chapter 3 is not a contribution but instead provides background for Chapters 4 and s. It de-

scribes LIO [77], an existing Information Flow Control Haskell library and Disjunction Category

(DC) labels [76], the label format used by LIO that specifies the information security policies to en-
force on the data.

Chapter 4 presents the second enhancement: a restriction to privileges used by DC labels to con-
trol their accidental or malicious misuse to downgrade more information than intended. There are
two kinds of restricted privileges: bounded privileges, which impose upper and lower bounds on the
DC labels of data that is declassified or endorsed using that privilege, and robust privileges which pro-
vide a property known as robustness [60, 88].

Finally, Chapter 5 presents the third enhancement: Clio, an extension to LIO that transparently
incorporates cryptography for data on an untrustworthy key-value store. Clio protects information
on the store that can be accessed by non-IFC programs. Clio is formalized with a computational
model of how it uses cryptography. With that model, a novel proof technique is used that incorpo-
rates the guarantees provided by IFC and cryptosystems together to show an even stronger property
that accounts for attackers more powerful than those typically considered by IFC or cryptosystems
alone.

All three enhancements include prototype implementations with various empirical evaluations to
show their usability and feasibility in a real system.

The material in Chapter 2 is joint work with Christos Dimoulas and Stephen Chong. The mate-
rial in Chapter 4 is joint work with Dan King, Pablo Buiras, Stephen Chong, and Alejandro Russo.
The material in Chapter s is joint work with Pablo Buiras, Owen Arden, Alejandro Russo, and

Stephen Chong.

Higher-Order Behavioral Contracts

for Modern Services

2.1 INTRODUCTION

The documentation of popular services is rife with descriptions of non-trivial properties. For in-
stance, the documentation of the Thrift API of the popular note-taking service Evernote' states that
the listLinkedNotebooks operation returns (among other data) a noteStoreURL, the endpoint of a ser-
vice that implements the NoteStore interface. This is not a trivial property of the listLinkedNotebooks
operation as it describes how another server, denoted by noteStoreURL, behaves. That is, the server at
noteStoreURL implements the NoteStore interface. Indeed, this is a bigher-order property.

Thrift and other simple serialization formats with a few simple types cannot capture such a prop-
erty, let alone enforce it. As a result, the documentation describes it only informally. It is up to the
developers to add code to check whether the property holds and to figure out the problem when the
property does not hold.

Despite this complication, the reliance on lightweight protocols comes with benefits. In fact,
Evernote’s API is just an instance of a general trend in software development, which we refer to as
modern service-orientation. Modern services, dubbed microservices, opt out of complex shared mes-
sage protocols, and encourage the use of different implementation languages and the independent

update and re-deployment of services. Earlier service-oriented architectures compose services us-

'https://dev.evernote.com/doc/

https://dev.evernote.com/doc/

ing sophisticated interfaces via middleware, such as CORBA [61] or Enterprise Service Buses, but
they impose complex message protocols on developers and large software shops have found that it
quickly becomes a productivity bottleneck [29]. Modern service-orientation makes development
and deployment faster and has been employed at software companies—including Netflix, Google,
Amazon, and Twitter—to construct massive and widely-used products [29, 72]. The success of mod-
ern services is succinctly summarized with the slogan “smart endpoints and dumb pipes” [29].

However, as we hint at with the Evernote example, implementation errors and incorrect compo-
sitions of components are more likely, as the simple message protocols—the “dumb pipes”—make
it easy to misuse a component’s interface or fail to implement an interface correctly. For example,
in Evernote’s API, a noteStoreURL may be a syntactically valid URL but the endpoint denoted by it
may implement a different interface than expected (e.g., possibly it provides some other Evernote
service).

The inability of low-level specifications to express and check such properties leads developers to
inject brittle defensive checks in their code. Misplaced or incorrect checks complicate the debugging
of services. This is exacerbated when services pass unchecked (and possibly incorrect) data from
messages they receive from other services. When a service eventually discovers a problem, the source
of the invalid data may be multiple message hops away.

To address this problem, we present Whip, a software contract system that bridges the semantic
gap between the low-level interfaces of modern services and the high-level application-specific prop-
erties services need.

Inspired by Design by Contract [52—54], Whip associates each service with a contract: a precise
and enforceable specification of its expectations of and promises to other components. Whip con-
tracts embed predicates written in a full-fledged programming language in a domain-specific contract
language tailored to the needs of modern services. Whip checks these contracts when components
run. Thus Whip contracts make it easy for programmers to state and enforce precise conditions on
the correct use of a service, and they eliminate the need for defensive code. Moreover, Whip facili-
tates the debugging of modern service-oriented applications, including legacy services, by providing
correct blame assignment: blame information pinpoints accurately the services whose code is the
source of the bug (i.e., behavior that deviates from the contract).

Modern services are higher-order in nature and so should be the Whip contracts that describe
their interfaces. To that end, Whip’s contract language is higher-order and, for instance, can express
that noteStoreURL refers to a service that adheres to the NoteStore contract. Even though contracts
for higher-order functions [26] have been extensively studied over the last fifteen years, adapting

these results for modern services is not straightforward. Modern services exchange data serialized as

streams of bits rather than closures or objects. Thus, the Whip contract language gives to program-
mers specialized linguistic tools to associate serialized data with a higher-order entity of a particu-
lar interface. For instance, a Whip contract can express that (i) some bits from a message encode a
pointer to the code portion of a closure; (ii) some other bits from the message encode the closure’s
environment; and (iii) the closure returns a list of maximum 7 notes when given an appropriate au-
thorization token and a non-negative integer 7.

In addition to an expressive specialized contract language, to be useful in practice, Whip must
meet a demanding set of requirements, derived from the high degree of autonomy and indepen-

dence that service owners have in the implementation and deployment of their services [29]:

* Whip must operate under partial deployment, since there may be some service owners that

choose not to use Whip.

* Whip must be transparent: it must make no changes to communication patterns between

services, so that services unaware of Whip continue to operate.

* Whip must be langnage agnostic. Services in the same application may be implemented in
many different programming languages. Indeed, the source code of services may not be avail-
able to modify or even read, since application programmers wire together (possibly third-
party) remote services. Thus, in contrast to a contract system for a programming language,

Whip cannot depend on the runtime of a component’s language to enforce contracts.

* Whip should accommodate the loose coupling of modern services and be extensible with mes-
sage formats. The simple network serialization formats used by modern services (e.g., Thrift,
SOAP, JSON, and Google Protocol Bufters) enable loose coupling, but evolve over time and

new ones are designed frequently.

Whip meets all of these requirements. Whip can be deployed on a service-by-service basis and is
backwards compatible with non-Whip services. Whip is language agnostic, taking a black-box ap-
proach to contract checking by inspecting only the messages that services send and receive. Whip is
also designed to be modular with message formats, allowing it to be extended to support additional
protocols and message formats. Whip already supports popular interface technologies such as Thrift,
WSDL, and REST.

Due to the above requirements and the domain specific nature of its contract language, Whip
is a complex and subtle system distinct from other contract systems. As any other contract system

though, Whip aims to provide programmers with accurate information upon contract violations to

listLinkedNotebooks()

Y

[(shareKey,noteStoreURL), ...] Serverl

Client authenticateToSharedNotebook(shareKey) o

authToken

A

findNotes(authTokenfilter,offset,maxNotes) Server2

Y

[Note,...]

A

Figure 2.1: Evernote: access to a shared notebook

cut down the debugging space and speed up fixes. Indeed, Whip provably assigns correct blame [23].
To establish this key metatheoretical property of Whip and capture formally Whip’s unique setting,
we describe its behavior with a custom model, W24 (Whip Model).

In the remainder of the chapter, we first describe Whip’s contract language (Section 2.2). Then,
we provide a complete but high-level description of the runtime of Whip (Section 2.3). Section 2.4
introduces W2 to make the informal description of the previous two sections precise. In Section 2.5,
we use W to show that Whip assigns correct blame. We have implemented Whip and used it to
harden the interfaces of a variety of off-the-shelf services (Section 2.6), and evaluated the perfor-

mance impact of Whip (Section 2..7).

2.2 THE WHIP CONTRACT LANGUAGE

We present Whip’s contract language by demonstrating how it can specify precise properties of the
Evernote API we discussed briefly in the previous section.

Evernote provides cloud-based storage of notes, organized into notebooks. Each user’s notes and
notebooks are stored in a distributed database called a note store. Client-side services implement
tools for users to manage their notes and notebooks. Moreover, Evernote allows users to share note-
books. Thus, a note store contains the notebooks a user has created, a list of shared notebooks she has
shared with other users, and a list of linked notebooks that other users have shared with her.

Accessing a shared notebook may require contacting a different note store than the one the user
contacts for her own notes. Figure 2.1 depicts some of the steps that a client must take to access a
note from a notebook shared with the client’s user by another user." Each box represents a service:
Client is the client-side service that interacts with Evernote services; Server1 is the Evernote service

that implements the user’s note store; and Server2 is the note store where a shared notebook resides.

"We present a simplified version of the API for clarity. Irrelevant arguments and return values of the operations we
consider are elided.

Arrows indicate requests (left to right, annotated with operation and arguments) and replies (right
to left, annotated with returned values).
To access a shared notebook, the

client retrieves a list of linked note- .
1 service NoteStore {

books from its note store (operation i)
2 NoteList findNotes(1: string authToken,

listLinkedNotebooks), and uses the infor-

3 2: NoteFilter filter,
mation from the list to contact Server2 .

4 3:132 offset,
and authenticate to the shared note-)

5 4:i32 maxNotes)

book (authenticateToSharedNotebook).))
6 throws (1: Errors.EDAMUserException userException),

The client authenticates by present-
ing the particular shareKey for Server2.

The client can then the shared
cdienta el aceess the share g9 list<Types.LinkedNotebook> listLinkedNotebooks()

notebook, by, for example, callin
Y P 5 10 throws (1: Errors.EDAMUserException userException),

the findNotes operation to search for
I

particular notes, passing as one of the
I2

arguments the authToken returned by

authenticateToSharedNotebook.

3 AuthenticationResult authenticateToSharedNotebook(

~

14 1: string shareKey)

Figure 2.2 displays the portion of Ev- i .
s throws (1: Errors.EDAMUserException userException),

~

ernote’s Thrift API that corresponds to

16
operations that play a part in this work }
17
flow. For each operation the Thrift API
describes the data types of arguments Figure 2.2: The NoteStore Thrift API

and results together with the data types
of any exceptions the operation may throw.

We focus on two first-order and two higher-order properties in this work flow that are necessary
to access notes from a user’s shared notebooks but are beyond the capabilities of Thrift’s interface

description language and are stated only informally in the documentation.

FIRST-ORDER PROPERTIES In contrast to its Thrift specification, the findNotes operation does not
accept any 32-bit integer as its offset argument. The offset is the smallest numeric index of the notes
included in the result of the operation. Thus, the documentation of the API explains, an offset has
to be a non-negative integer. This is a first-order function property that a contract system for a pro-

gramming language can capture with a pre-condition predicate.

The second property is a depen-

service NoteStore {

~

dent first-order function property; the

findNotes operation returns a list with 2 findNotes(authToken,filter,offset,maxNotes)

requires « offset >=0
length at most maxNotes (another argu- 3 @req ¢ ?

ment to the function). Thus, it corre- + @ensures «length(result) <= maxNotes »
. bl
sponds to a post-condition that states a

property of the result of a function call in

relation to the arguments of the call. 7 listLinkedNotebooks()

& @foreach (noteStoreUrl, shareKey) in « result »

HiGHER-ORDER PROPERTIES The 9 identifies NoteStore at « noteStoreUrl »

two higher-order properties of the 1o withindex «shareKey »

Evernote API are the ones we men- u

tion in Section 2.1. First, the operation 2

listLinkedNotebooks returns a list of 13 authenticateToSharedNotebook(shareKey)

pairs (noteStoreURL, shareKey) where 14 @where indexis « shareKey »

noteStoreURL refers to a service that im- 15 @ensures « type(result) '= EDAMUserException »
plements the interface of a note store. In ¢

terms of a programming language, this 17}

property can be expressed witha higher— Figure 2.3: The NoteStore contract
order function contract that ascribes a

contract for the services pointed to by the

result of listLinkedNotebooks.

Second, the shareKey that is bundled up with each noteStoreURL in the result of listLinkedNotebooks
has to be used as an argument for a successful call to authenticateToSharedNotebook on that service.
This is a common pattern in the world of microservices due to the lack of proper abstractions such
as closures and objects. Since programmers cannot properly encapsulate the environment of a piece
of code, they manually follow call protocols and explicitly pass around relevant pieces of the environ-

ment of a service’s operation when invoking the operation.

Whip’s contract language can capture all these properties. The Whip contract language does not
focus on syntactic specifications such as the data types of arguments and results of service operations
(which, as Figure 2.2 demonstrates, interface description languages such as Thrift’s already handle).
Its features are tailored to the service contracts that Whip aims to express and enforce.

Figure 2.3 shows part of the service contract for a note store service expressed in Whip’s Interface

Description Language (IDL). The keyword service defines a service contract that describes the in-
terface of a service, and gives a name to the contract, in this case NoteStore. For each operation the
service provides, the service contract contains an operation contract, that is a signature for the opera-
tion followed by tags that state properties about the operation’s arguments and result. For example,
the NoteStore service contract includes operation contracts for findNotes, listLinkedNotebooks, and

authenticateToSharedNotebook.

FIRST-ORDER OPERATION CONTRACTS The operation contract for findNotes (lines 2—4) ex-
presses the two first-order properties from above: offset is a non-negative integer * and the length
of the returned list is at most maxNotes. The tags @requires and @ensures define, respectively, a pre-
condition and a post-condition, specified as Python code, i.e., code between « and » in the contract
is Python. Code in pre- and post-conditions can refer to the operation’s arguments (e.g., offset and
maxNotes in the snippet above). Post-conditions also have access to a special variable result that is
bound to the result of an operation call. In the snippet, @requires checks that offset is non-negative

and @ensures specifies that the length of the result list is less than or equal to maxNotes.

Hi1GHER-ORDER OPERATION CONTRACTS Recall that the two higher-order properties of interest
state that listLinkedNotebooks returns pairs (noteStoreURL, shareKey) where (i) noteStoreURL refers to
a note store, and (ii) shareKey can be used to successfully call authenticateToSharedNotebook on that
note store. Consider a single such pair (#, k). To express the properties, the Whip NoteStore contract
must be able to express not only that # refers to a NoteStore service (say, Server2), but also that the
operation authenticateToSharedNotebook on Server2 expects k as its argument.

To capture that # implements the NoteStore contract where & can be used to successfully call
authenticateToSharedNotebook, we introduce indexed service contracts, a new kind of contract that
handles this idiom of modern services. We treat NoteStore as a family of service contracts, indexed by
avalue.” Thus, the indexed service contract NoteStore(k) is an appropriate service contract for the
service that « refers to.* The same service may, of course, satisfy other indexed service contracts from
the same family, such as NoteStore(k’), where ¥’ is a different shareKey.

Returning to the IDL, lines 9—10 present an example of a higher-order operation contract. The

"The Thrift API of Evernote already states this argument is a 32-bit integer. Thus, the Whip contract does not
repeat this syntactic requirement.

*Indeed, every Whip contract is implicitly a family of contracts; if no index value is explicitly provided, a special
default index value is used.

’We use “service contract” to refer to both service contract families and indexed service contracts when this is clear
from the context.

10

operation contract specifies that the result of listLinkedNotebooks identifies multiple NoteStore ser-
vices: for each pair in the returned list, noteStoreURL refers to a service that implements service con-
tract NoteStore(shareKey). Line 14 presents a use of the higher-order operation contract. This line
indicates that authenticateToSharedNotebook is an operation of a service that implements

NoteStore (shareKey), where shareKey is the operation’s argument.

2.3 THE WHIP RUNTIME, INFORMALLY

In this section we informally describe how the Whip contracts of Section 2.2 are enforced by a Whip-
enhanced service. Section 2..3.1 describes the high-level design and deployment of an enhanced service.
Section 2.3.2 explains how the enhanced service uses its internal state to enforce Whip contracts, and
Section 2.3.3 describes the enhanced service’s behavior in the event of a contract failure. Finally, Sec-
tion 2.3.4 describes how Whip leverages a special enhanced protocol when both services involved in
an operation are enhanced.

Although Whip targets distributed applications, we emphasize that we focus on functional cor-
rectness of service composition via higher-order contracts, and not on reliability or fault tolerance
of distributed systems. Indeed, modern services are often chosen for organizational concerns such
as loose coupling and scalability, rather than for reliability. Existing techniques to enhance the relia-
bility of distributed systems are compatible with and orthogonal to Whip. That said, Whip assumes
a communication layer (i.e., TCP), that can authenticate endpoints and does not corrupt messages.
Whip does not rely on the order of message delivery in order, nor that message delivery is guaran-
teed. Although TCP provides both those guarantees, higher-level messaging layers do not (since, for

example, they may close and re-open TCP connections).

2.3.1 THE WHIP ADAPTER

A Whip-enhanced service is a service deployed with an adapter.

. . . . black box

Figure 2.4 depicts a deployment of a Whip-enhanced service. adapter
The Whip network adapter intercepts all messages between

P P P & €| [state| fja2
the service and its peers. The network adapter uses its internal

. . . IOI.. I01..

state to check messages against their corresponding contract. o spec|
The adapter runs in its own OS process and intercepts raw

TCP data to and from the service and is responsible for check-
Figure 2.4: Diagram of a Whip adapter
ing contracts. Whip treats all services as black boxes and does

not require code modifications nor does it change a black-box service’s view of interaction with other

11

services. If a contract check fails, Whip logs the details of the contract and message involved, includ-
ing blame labels that are unique identifying names of adapters and help localize the fault at hand.
An adapter’s blame label should uniquely identify the deployment of the adapter’s enhanced service.
In some settings, this may be as simple as the hostname of the service.

Each adapter has local state that contains sufficient information to determine which messages to
intercept and which contracts to enforce on these messages. The local state consists of a mutable

blame registry and confirmation mapping.

* The blame registry tracks contract information about services and requests and who is re-
sponsible for this contract information. It maps service entries and request entries to blame

information.

— Service entries track contract information about services: a service entry is a pair of an

endpoint and an indexed contract.

— Request entries track contract information for requests made by and received by the
Whip-enhanced service: a request entry is a pair of a unique request identifier and the

service entry to which the request was made.

— Blame information consists of blame labels that identify a set of adapters as the sources
of the assumption that the relevant service should satisfy the indexed contract. When
a contract violation occurs, blame information is used to generate log messages to help
determine why the contract failed. The fine granularity of service entries and request
entries allows Whip to precisely track blame information, and produce useful log mes-

sages.

* The confirmation mapping tracks whether a service has in fact agreed to implement a contract
family &, or if this is merely asserted by a third party. The confirmation mapping maps service
entries and request entries to their confirmation status. If a service entry or request entry is
confirmed, then the adapter can correctly assume that the endpoint for the appropriate service

has committed to the associated indexed contract.

The local state of each adapter is initialized with information about well-known service endpoints
that the Whip-enhanced service might communicate with, and what contracts those communica-
tions should be held to. Any requests to those configured endpoints are intercepted and checked

against the specified contract.

12

The local state is updated as the adapter processes messages it intercepts and learns about new
services, observes requests, and finds out that services are confirmed. An adapter uses its state to
lookup the contract family it believes a host adheres to and to assign blame in the event of a contract

failure.

CoNFIGURING WHIP We assume that all adapters have access to the same fixed Whip contract
specification (as described in Section 2.2). That is, in our current version of Whip, adapters can learn
about new services, but not about new contract families. This is not a fundamental restriction.

In addition, adapters are given a configuration file that describes, for each contract family, the
low-level message protocol used and the syntactic representation of messages for this contract. This
enables the adapter to parse the raw bytes comprising a message and extract values needed for con-
tract checking and identifying new service entries.

The separation of the syntactic interface of a service and its contract allows Whip to handle multi-
ple message protocols and RPC frameworks within a single distributed application, and even within
a single Whip-enhanced service. This is a necessity due to the loosely-coupled and heterogeneous na-
ture of modern services. Currently, Whip supports SOAP (defined by a WSDL), REST, and Thrift
messages and support for more protocols can be added without modifications to the design of Whip
or its contract language.

Although the design and implementation of this configuration and parsing information is one
of the significant engineering challenges we encountered—and essential to developing a useful and
practical tool—for the rest of the chapter we focus primarily on how we track contract and blame

information and enforce contracts.

2.3.2 ENFORCING CONTRACTS

In this section we describe how a Whip adapter uses its local state to check the contracts described in
Section 2.2.

When a service makes a request, the adapter intercepts the message if the destination endpoint
matches a service entry’s endpoint in the adapter’s blame registry. Alternatively, if the service is mak-
ing a reply, the adapter intercepts the message if the destination endpoint matches a request entry’s
endpoint in the adapter’s blame registry. If a matching entry is found, then it is checked according to
the contract family given in the blame registry for the entry. We discuss the behavior of each kind of
contract check the adapter performs and then describe the behavior of the adapter when no match-

ing entry is found.

13

FIRST-ORDER CONTRACTS

The most basic Whip contracts consist of pre- and post-conditions that check first-order properties
of application message data.

After the message is parsed according to the configured message protocol, the pre-condition check
is made for request messages and the post-condition for reply messages. In the event of a contract
failure for a pre-condition, the sending service is always blamed as it is the initiator of the request.

Post-condition violations occur when a service sends a reply to another service. Whip logs a con-
tract error with the blame labels from the blame registry for the request entry. We describe in Sec-
tion 2.3.3 which blame labels are used for a request entry in an adapter’s blame registry, but intu-
itively, the blame labels are the sources of the assumption that the endpoint satisfies the associated

indexed contract.

HiGHER-ORDER CONTRACTS

The second form of contract is a higher-order contract. From Section 2..2, these contracts contain an
identifies tag.

For a message that invokes an operation that includes an identifies tag in its contract, the mes-
sage contents may identify (zero or more) endpoints that should satisfy indexed contracts. For ex-
ample, in our Evernote example, the reply message for the listLinkedNotebooks operation identified
noteStoreURL as satisfying the indexed contract NoteStore(shareKey).

The Whip adapter updates its blame registry to record the newly identified endpoint (and the in-
dexed contract associated with it) so that future messages to and from the endpoint are intercepted
and appropriate contract checks performed. That is, returning to our Evernote example, the adapter
updates its blame registry to include a service entry for the endpoint at noteStoreURL that satisfies

the indexed contract NoteStore(shareKey).

Byrass CHECKS

If no matching service entry or request entry is found in the blame registry for an intercepted mes-
sage, the adapter bypasses contract checks for the message. There are two reasons that there may be
no matching entry in the blame registry: if no contract information is available, or there is conflict-
ing contract information for the endpoint. There may be no contract information in the cases when
we are interested in checking contracts for only some of the network communication performed

by a black box. For example, we may choose to ignore web browser requests by the black box. The

adapter may also bypass the checks if the local blame registry contains a conflict for an endpoint. A

14

conflict occurs when there is no confirmed service entry for the endpoint and multiple service entries
that disagree on the contract family for the endpoint. We require that an endpoint implements at
most one contract family, so at least one of the unconfirmed service entries is incorrect (but we do
not necessarily know which one). (If we have a confirmed service entry, then the service definitely
implements the specified contract family, so any unconfirmed service entries that disagree can be

ignored.)

2.3.3 TRACKING BLAME

Central to Whip’s contract checking mechanism is the blame information it provides upon a post-
condition violation. The key intuitive idea is that in the event of a contract violation by a given end-
point, a Whip adapter should blame the service(s) that (from the adapter’s perspective) are responsi-
ble for the initial association between the endpoint and the contract.

We describe how Whip adapters update their blame registry to record and track blame informa-
tion in order to achieve this goal. We first introduce some terminology to help describe different
ways an adapter updates its blame registry. Given an adapter 4, a service contract ¢, and a message 7z,
m identifies a service entry if checking the relevant part of ¢ against 7 results in the association of an
endpoint with an indexed contract via the identifies tag of ¢. If the identified service entries are not
already in the blame registry of 4, 4 extends its blame registry accordingly. Given an adapter .4 and
a message m, m invokes a service entry if it is a request message to the endpoint of the service entry,
and due to processing 7, A checks m against the relevant part of the contract that the service entry
associates the endpoint with. Note that the relevant service entry may not be in the blame registry
of A before the invocation. In fact the invocation may cause 4 to add the service entry to its blame
registry. For instance, in our Evernote example consider that the Client is enhanced and its adapter’s
blame registry maps Server2 to the indexed service contract NoteStore<k>. If the Client authenticates
to Server2 using k' (i.e., a shareKey other than k) then the invocation results in a new service entry in
the blame registry of the Client’s adapter that associates Server2 with NoteStore<k’>.

Service entries are created and updated in an adapter’s blame registry only when the adapter
processes messages that identify or invoke service entries. The adapter aims to use the most precise
blame information when creating new entries in its blame registry. However this is not always pos-
sible. For example, when an enhanced service adds a service entry due to processing a request from
a (seemingly) unenhanced service, the blame label of the unenhanced sender of the message is un-
known. In these situations the special blame label “{” is used to represent unknown blame infor-

mation. All other blame labels uniquely identify Whip adapters; blame label { can be thought of as

Is

representing all services that an adapter believes are non-Whip-enhanced. Request entries are created
when an adapter processes a request message (either as a sender or receiver) and their blame informa-
tion is determined by the corresponding invoked service entry. Once created, request entries are not
modified." We describe further the various ways adapters extend their blame registries with service

and request entries focusing on blame information.

* When an enhanced service sends a request message to an endpoint:

— If the message invokes a service entry, the adapter of the enhanced service may create a
new service entry in its blame registry as discussed above. The blame information for
such a new service entry is the adapter’s own label. Intuitively, this is because the black
box of the enhanced service initiated the request, invoking a service entry not previously
seen, and so it is solely responsible for the claim that the endpoint should be associated

with the corresponding indexed contract.

— If the message identifies a service entry that is not in the blame registry of the enhanced
service’s adapter, a new service entry is created. The blame information for such a service

is the blame label of the enhanced service itself.

— If the message identifies a service entry that is in the blame registry of the enhanced ser-
vice’s adapter, the blame information described above is merged (set union) with the

existing blame information for the service entry.

— If the message invokes a service entry, and the service entry is not confirmed, a new re-
quest entry is created, and its blame information is the same as the blame information
for the invoked service entry. The blame labels for the request entry are used to assign
blame in the event of a post-condition contract violation (i.e., the corresponding reply
violates its contract). For this reason, the request entry inherits its blame information
from the invoked service entry. Put differently, the blame labels are those of the en-
hanced service(s) that asserted that the endpoint should satisfy the associated indexed
contract. In many cases, the enhanced service that made the assertion is in fact the ser-
vice itself (e.g., through its initial configuration). If the invoked service entry is con-
firmed then no request entry is created as the adapter does not check a post-condition

on the reply message for the request (see Section 2.3.4, below).

* When an enhanced service receives a request message:

"In the implementation, request entries exist only for the duration of the request; in the formal model of Sec-
tion 2.4, request entries are never removed from the blame registry.

16

— If the message invokes a service entry, the adapter of the enhanced service may create a
new service entry in its blame registry. If the message originates from another enhanced
service’s Whip adapter and contains enhanced information (see Section 2..3.4, below),
the blame information for the new service entry is the same as in the sender’s blame
registry (since the sender’s adapter has sent this blame information). Otherwise, since
the sender of the message is unknown, the blame information is the special blame label
“_l_”'

— If the message identifies a service entry that is not in the blame registry of the enhanced
service’s adapter, a new service entry is created. If the message originates from another
enhanced service’s Whip adapter and contains enhanced information, the blame infor-
mation for the new service entry is the same as in the sender’s blame registry (since the
sender’s adapter has sent this blame information). Otherwise, the blame information is

the special blame label {.

— If the message identifies a service entry that is in the blame registry of the enhanced ser-
vice’s adapter, the blame information described above is merged (set union) with the

existing blame information for the service entry.

— If the message invokes a service entry, a new request entry is created, and its blame infor-

mation is the same as the blame information for the invoked service entry.

* When an enhanced service sends or receives a reply message, if the message identifies a new
service entry, the service’s adapter adds a new service entry to its blame registry whith the same

blame information as the blame information of the corresponding request entry.

Back to our example from the beginning of this sub-section, due to Client’s request to Server2,
Client’s adapter adds to its blame registry a service entry whose blame information is the blame label
for Client. Since this service entry is unconfirmed, Client’s adapter also adds to its blame registry a
request entry with the label of Client as its blame information, the same blame information as the
newly added service entry. Thus if the Client’s adapter discovers that the reply from Server2 violates
the corresponding post-condition from the noteStore contract, the adapter logs a contract violation

blaming the Client.

BLAME FOR HIGHER-ORDER CONTRACTS ~ Readers may find it surprising that the blame informa-
tion for an identified service entry introduced by a reply message is the same as the client’s blame in-

formation for the invoked service entry. However, this is in keeping with the philosophy of higher-

17

order contracts in functional programming languages [23, 26]. This is because a service entry iden-
tified in a reply is analogous to a function freturning a closure g; in higher-order contracts for func-
tional programming, the contract to enforce on g is derived from the contract for £, and so the blame
labels for g are the same as the blame labels for /7

To make this design decision more concrete, consider a variant of the Evernote example from
above. Suppose that Client sends a request to Server1 and from the reply identifies that, according to
Server1’s contract, Server2 should adhere to the contract NoteStore(k). Moreover, assume that Client
sends a request to Server2 that invokes the service entry that associates Server2 with NoteStore(k),
and Client detects that the reply violates the relevant post condition of the contract. Who should
be blamed for the violation? Naively we may say Server2. However, from the perspective of Client,
Server2 never agreed to adhere to contract NoteStore(k). It is Serverl that made an error in asserting
that Server2 implements NoteStore(k). That is, Server1 did not live up to its contract since
listLinkedNotebooks returns a service, Server2, that for whatever reason does not meet NoteStore(k).
Making sure that Server1 returns a service that meets NoteStore(k) is the right fix to the problem
at hand. After all, Server2’s behavior may be what its other clients expect. The fact that this behav-
ior triggered a contract violation is only because our Client relied on Server1 to live up to its con-
tract. Thus, transitively, Whip blames whoever Client believes is responsible for the assumption that

Server1 implements an appropriate contract for listLinkedNotebooks.

2.3.4 LEVERAGING OTHER ADAPTERS

When the destination of a message is known to be Whip-

enhanced, an adapter enriches the message with extra infor-
unenhanced

mation to help the receiver adapter improve the accuracy of

its blame information. This enbanced interaction differs from

unenbanced interaction as enhanced interaction includes addi-

tional information understandable only by adapters, whereas enhanced |:|:::

unenhanced interaction is equivalent to the messages sent by

the black boxes. Figure 2.5: Whip-enhanced interaction
Enhanced messages are only sent between adapters, as we

cannot assume that black boxes understand them. An enhanced message attaches to a black box

message. Enhanced messages are translated back to their original black box messages before being

passed to a black box.

Enhanced messages contain information from the sender’s blame registry for relevant service

18

entries and request entries. This blame information is used as described in Section 2..3.3 above. En-
hanced messages also contain confirmation status of service entries and request entries, to propagate
knowledge of confirmed services (i.e., services known to be Whip-enhanced).

Whip favors enhanced interaction as this helps make blame information more precise. However,
enhanced interaction can occur only when the sender knows (based on confirmation status) that the
receiver is Whip-enhanced. Enhanced interaction may not be possible due to partial deployment
(i.e., one of the black boxes does not have a Whip adapter) or because the two communicating Whip-
enhanced services are not aware that the other is also Whip-enhanced (which may occur if the initial
confirmation mapping in the adapter’s local state did not confirm the other adapter, and previous
enhanced messages in the system have not propagated confirmation of the other adapter). Figure 2.5
depicts enhanced interaction between two adapters (with blue arrows) together with unenhanced
interaction with service that is not Whip-enhanced (with black arrows).

Additionally, when two Whip-enhanced services use enhanced interaction, they share the burden
of contract checks; the sender of the request checks the pre-conditions, and the sender of the reply
checks the post-conditions. Conversely, when adapters use unenhanced interaction, each adapter

performs both pre- and post-condition checks, in case the other side is not enhanced.

2.4 WHIP FORMALLY

In this section, we gradually introduce WA, We first describe Core 174, a model of how modern
services interact (Section 2.4.1). We extend Core WA to WA, a model for Whip (Section 2.4.2). We
precisely describe the state of the adapter (Section 2.4.3), how it uses its state to intercept and check
messages for contract violations (Section 2.4.4), and how it updates its state (Section 2.4.5). We for-
mally show Whip assigns blame correctly in Section 2.5. W4 demonstrates formally how Whip

meets the requirements laid out in Section 2..1.

2.4.1 CORE WA: D1sTRIBUTED BLAcCK BoxEs

Figure 2.6 shows the syntax and reduction rules of Core W4, which captures communication be-
tween black-box services. Processes Pand Q represent black-box services and the messages they ex-
change. There are two kinds of basic processes: black boxes [4] and messages 7. A compound pro-
cess P || Q represents the parallel composition of processes Pand Q. We assume standard structural
equivalence.

A black box [7] represents a service with host name «. To capture the lack of access to a service’s

source code, black boxes are opaque and we can observe only messages they send and receive. For

9

Processes P,Q = | m to a ’ PH_Q
= req #n from a:s
reply #n from a:s

Messages m

|
Host names 4,0 € A
Identifiers n €N
Bit strings s € {O, I}>|<
Contexts P =] | P HP
SEND-REQUEST
nfresh a#b

Pl@] — Pl || req #n from a:s to b

SEND-REPLY
aFb
Pl@] — Pl@ || reply #n from a:s5 to b

RECEIVE-MESSAGE

Pl@ ||m to a — P[]

Figure 2.6: Core WM syntax and reduction rules

example, the client and two note stores from Section 2.2 are modeled as black boxes, which we refer

toas [client], [serverl], and [server2].

Messages are of the form 7 to a where 4 denotes the name of the recipient of the message. In
Core W there are two types of messages: requests and replies. Request messages are of the form
req #n froma: sand reply messages are of the form reply #n froma : 5, where 4 is the originator
of the message, s is the payload of the message and 7 is the request identifier. A request identifier
uniquely matches a request with its reply message.

In Core W2, processes evolve when black boxes consume and spawn messages. The reduction
rules are of the form P — . Rule SEND-REQUEST in Figure 2.6 shows that [4] can produce
a request message req #n froma: s using a fresh' request identifier 7. Rule SEND-REPLY shows
that [4] can spawn a reply message for any request identifier 7. In practice, though, a meaningful
request identifier in a reply message would come from a previous request it received. Finally, rule

RECEIVE-MESSAGE shows how a black box with host name 4 can consume request and reply mes-

"To ensure that request identifiers are locally unique, the black box draws in succession fresh identifiers from a local
enumerable set. Locally unique request identifiers together with globally unique host names guarantee that each request
is globally unique.

20

Processes P o= .. | monl(J,P“) | m to a
Base Processes P4 = ‘ PaH m to b

Enhanced Messages 7 ::= mwith {se-blame:=/; id-blame:=/; id-conf:=c}

Log Entries le ::= Pre(se, Z) ‘ POSt(SE,A[)
Service Entries se = asatisfies /€<V>
Request Entries re 1= #7’1 from aexpectsse
Contract Names ke K

Blame Labels L
Y

m m

Contract Indices Y

Figure 2.7: WM syntax

sages.
Returning to the example from Section 2.2, we show the trace of the first request for listLinked-
Notebooks between client and server1 (2.1), the client making the request (2.2), server1 consuming

the request (2..3), server1 responding to the request (2.4), and client consuming the request (2.5):

[client] || [serverl] — (2.1
lreq #n, from client: list...' to serverl]| — (2.2
[client] || [serverl] — (2.3
[client] || [serverl] || reply #mn from serverl: ' [share...' to client — (2.4

[client] || [server]] (25

2.4.2 ADDING WHIP ADAPTERS

Equipped with a model of modern service interaction, we extend W4 with Whip adapters. Con-
ceptually, an adapter wraps around a black-box service. In W24 (and Whip), adapters are mutually-
trusted. To reflect the independent deployability of modern services, we do not model adapters with
access to a shared state and instead model it explicitly. Adapters piggyback on service messages to up-
date each other’s local state. Though it adds complexity, we formally model this explicit state trans-
fer as it is necessary to efficiently and precisely blame contract violators.

Figure 2.7 presents the syntax of WA/, extending the syntax of Core IW4. An adapter process

21

mon/(a, P4) wraps a base process P#, which consists of a black box, and a (possibly empty) list of
Core W4 messages that the black box has just sent and have yet to be processed by the adapter, or
that the adapter has forwarded to the black box. Each adapter has a unique label /and local state o
that contains information for checking contracts and assigning blame. Back to the example from

Section 2.2, we can model the interaction of a Whip-enhanced client with a Whip server1, and a non

Whip-enhanced server2 as: mon'(o., [cUient]) || mon’(a;, [serverd]) || [server2].

2.4.3 ADAPTER STATE

Section 2.3.1 presents in-

formally the state of Whip State o = (8,B,Cl,V)

adapters, which we map here Specification S k— (e e)

to their formal counterparts Predicates e m +— bool

in JW2A. Each adapter main- Blame Registry B (se 1)U (re>1)

tains local state o, for which Confirmation Map C (se = c) U (re—)

the syntax is given in Fig- Confirmation c n=v | «x

ure 2.8. Please ignore por- Provenance Map V= se > pe

tions of the Figure shadedin ~ Provenance Entry pe ::= 4 intro | se intro | learned

gray; they will be discussed in Figure 2.6: WM store syntax
Section 2.s.

State o is a tuple (S, B, C, le), consisting of its specification S, blame registry B, confirmation map
Cand error log le. For brevity, we write spec,,, blame,, conf,, and errors, to project each ele-
ment, respectively, of state 0.

The first piece of state is the specification spec, = S that maps contract names k to pre- and
post-condition for a service’s operation. For simplicity, we assume that every service offers one op-
eration. Formally, S maps a contract name k to a pair (epre, €posr)- We leave the syntax of predicates
e unspecified, but require them to be total (i.e., terminating) single argument boolean functions.
Specifications do not change during execution, nor are transferred between adapters. Moreover we
assume specifications contain information about 4// contract names used by an adapter.

The second piece of state is the blame registry blame, = B, which maps service entries and
request entries to blame information. A service entry s¢ = a satisfies k(v) indicates that the ser-
vice at host 2 should implement indexed contract k£(v). We assume that a service host implements at
most one contract family. A request entry 7e = #n from aexpects se indicates that host 2 made

a request with request identifier 7 to a service with service entry se. Entries in the blame registry of a

22

Whip-enhanced service z correspond to assumptions that « has about other services, and that clients
of 4 have about 4. Blame information 7is the set of labels of adapters that introduced the relevant
service. In Section 2.4.5, we describe formally how blame information is propagated to assign blame
in the event of contract violations.

An adapter records the confirmation status of each service entry and request entry in its confirma-
tion mapping conf, = C.Ifaservice entry, a satisfies k(v), orarequestentry, #n from &
expects asatisfies k(v), is confirmed (i.e., confirmation status is v'), then z is enhanced (i.e.,
is wrapped by an adapter), and the adapter state of # also associates the service it offers with the con-
tract name k. A confirmation status X means that the host « is not definitely known to be Whip-
enhanced or that the adapter state of 2 does not associate the service it offers with the contract &.

Finally, an adapter’s local state contains a set of log entries errors, = le. Each log entry records
the failure of a contract. A pre-condition log entry Pre(a satisfies k(v), /) indicates that the
black box wrapped with the adapter with label / violated the pre-condition for indexed contract £(v)
while making a request to 4. A post-condition log entry Post (2 satisfies k(v),]) indicates that
black box 4 sent a reply for a request it received but the request failed to meet the post-condition of
indexed contract k(v), and that the adapters with a label / € 7are to blame, i.e., they are responsible

for the assumption that 2 would satisfy the indexed contract.

2.4.4 ADAPTER MESSAGE INTERCEPTION AND CONTRACT CHECKING

Before delving into the semantics of WA/, we first introduce formally enbanced messages, the mes-
sages adapters exchange in enhanced interaction (see Section 2.3.4). An enhanced message 7 with {
se-blame:=[id-conf:=c¢; id-blame:=ly } attaches to a black box message 7 the additional
information that the receiver should hold7responsible if m does not live up to its contract. The
enhanced message also contains blame information I;7 and confirmation status c for the identified

service in the message. For example, server1’s reply to the client,
reply #n fromserverl : " [shareKey...' toclient

would identify server2 satisfies NoteStore(sharekey) and the confirmation status ¢ in the en-
hanced message would indicate whether server2 is known to satisfy contract NoteStore(sharekey)
and further that server2 is Whip-enhanced. To simplify the model, each message’s payload identifies

a single service.

The reduction semantics of W/ include the reductions of Core W4 (which allow black boxes

23

Enhanced Interaction

ENHANCED-SEND ENHANCED-RECEIVE
(k,v') = contract_for, (b, m) (k,v') = contract_for,(a,m)
o' m=lift,(k,v,m,I) o', m = lower,(k, v ,m)
Plmon(c, P*||m to b)]—Plmoni(a’, P*)| 7 to b] Plmon’(o, P*) | to a]—Plmoni(a’,P*||m to a)]

Unenhanced Interaction

UNENHANCED-SEND UNENHANCED-RECEIVE
(k,X) = contract_for, (b, m) (k,c) = contract_for,(a,m)
o' m=lifte(k,X,m,]) o, m= lowery (k,X,m) o' m=lifts(k,X,m,T) o, m= lower, (k,X,m)
Plmonl(a, P*||m to b)]—Plmoni(c”, P*) || m to b] Pmon{(a, P*) || m to a]—Plmon{(c”,P*||m to a)]

Bypass Adapter

BYPASS-SEND BYPAss-RECEIVE
contract_for, (b, m) undefined contract_for, (a, m) undefined
Plmonl(a, P*||m to b)]—Plmoni(a,P*)||m to b] Plmonl(c, P*) | m to a]— Plmon'(c, P*||m to a)]

Figure 2.9: WM reduction rules

to consume and spawn messages). All messages sent to or from a wrapped black box are intercepted
by the adapter, which processes the message (possibly performing contract checks and/or updating
the adapter’ internal state) and then forwards the message onwards (possibly transforming an unen-
hanced message to an enhanced message, or vice-versa).

There are six rules shown in Figure 2.9, in three groups: (1) Enhanced Interaction (cf.

Section 2.3.4); (2) Unenhanced Interaction (cf. Section 2.3.4); and (3) Bypass Adapter (cf.

Section 2.3.2). Within each group, there is one rule for when the wrapped black box is sending a mes-
sage, and one rule for when the wrapped black box is receiving a message. The decision for which of
the six rules to use is based on the internal state of the adapter, the destination of the message, and
whether the message is enhanced or not. We discuss each of the three groups in turn.

Metafunction contract_for' provides convenient access to confirmation status, and is how the
adapter chooses to use one of these three groups. Conceptually, contract_for searches the state
for a service entry or request entry whose host matches the destination of the message and returns
the contract family and confirmation status of that entry. It is possible that contract_for is unde-

fined; we return to this last case in Section 2.4.4.

"Defined formally in Appendix A.L.

24

« function liftq(k,c,m,]) w function lower,(k, c, m)

% (se,re,seiq) =entries(m, k) w (se,re,seiq) = entries(raw(m), k)
3 update-lift(m,c, se, re, seia, >Stateupdate 1 update-lower(m,c, se, 7e, seiq > State update
date-1if I State upd date-lower (7 State upd

& (pre, post) = spec, (k) > Fetch contract 1 return raw(m) > Return unenhanced
s if type(m) == req then > Request sent . .
6 if —pre(m) then errors, +=Pre(se, 1) i fu}nctlon entries(m, k)

else b Replysent if type(m) == req then > Is request message
7 _
5 T=blame,(re) > Fetchrecorded blame forre 7 1 (a,8) = (to(m), from(m)) ID Tola, from b
P if —post(m) then errors, += Post(se,) woelse B 1s reply message

19: (a,b) = (from(m), to(m)) > From a,to b

o returnmwith {se-blame = blame, (se);
id-blame = blame, (seid);
id-conf = conf, (sei)}

2o return (asatisfies k(index(m)),
reqid(m) from bexpects
asatisfiesk(index(m)),
identified(m))

Figure 2.10: 11 ft and Lower metafunctions.

ENHANCED INTERACTION

The rules in this group apply when the recipient of the message is known to be Whip-enhanced, i.c.,
conf, contains a mapping for a service entry for the message recipient that maps to a confirmed v*
status. This is captured by metafunction contract_for returning (k, v') where k is the contract
name for the confirmed service. Returning to the example of Section 2.2, if sent a message
to , i.e., mon¥(a, ||m to serverl), the enhanced send rule would be used
if serverl was known by client’s adapter to be Whip-enhanced: contract_for, (serveri, m) =
(NoteStore, v').

When the recipient of the message is known to be Whip-enhanced (i.e., confirmed), the adapter
transforms the message by “lifting” it to an enhanced message via the 11 ft function. On the receiv-
ing end, the recipient adapter will “lower” the enhanced message it received back to an unenhanced
message via the Lower metafunction. Figure 2.10 presents the definitions of 11 ft and lower as
pseudocode. Both metafunctions imperatively update the adapter’s state o as a result of contract
checking, confirmation propagation, and blame propagation. (We defer explaining the state update
functions until Section 2.4.5.) We first describe 11 ft and then lower.

Metafunction 11 ft, takes as arguments: the name of the contract to check the message against
(k); confirmation status of the other communication party (¢); the intercepted message to “lift” (2);
and the label of the adapter of the sender of the message (/)." It returns a tuple (¢,) where o is
the implicitly returned final updated state of the adapter, and 7 is the transformed enhanced mes-

sage. We now describe each sub-task of 11 ft.

"For ENHANCED-SEND, this is the adapter’s own label.

25

EXTRACT CONTRACT INFORMATION 11 ft extracts the contract information from the message

it is processing using the entries metafunction to produce the service entry for the message, the
request entry, and service entry of the identified service in the message. Internally it uses helper meta-
functions to parse the message: from(m) extracts the origin of the message 7 and to(m) extracts
the destination of the message 7. For simplicity we assume two message parsing metafunctions that
can parse Whip-specific information from a message payload: index () is the index for the con-
tract family and corresponds to the tag where index s in the Whip IDL; ident1ified corresponds

to the result of the identifies tag, and indicates that the payload identifies a service that should imple-
ment a certain indexed contract. Returning to the running example of Section 2.2, server1’s reply

message to client’s request for listlinkedNotebooks is parsed as:

entriese,(reply #n fromserverl : " [(share...',NoteStore) = (
serverlsatisfies NoteStore(v),
#n fromclient expects serverlsatisfies NoteStore(v),

server2 satisfies NoteStore(shareKey))

In this example v is the index used when the client called listLinkedNotebooks on server1.

PRE-CONDITION CHECKS Upon a contract violation, the 11 ft metafunction constructs a log
entry deriving blame from its arguments. For rule ENHANCED-SEND (Figure 2.9), these arguments
come from the label of the adapter. That is, for failure of a pre-condition, the service sending the

request (hereafter the client) is always blamed.

PoST-CONDITION CHECKS Post-condition violations occur for the service sending the reply (here-
after the server) to the client. Whip logs a contract error with the blame labels / from the server’s
blame registry for the request entry re. We discuss in more detail formally how blame information is

transferred in Section 2.4.5.

MESSAGE TRANSFORMATION The final step of 11 ft is to construct a new enhanced message
(line 10) to transfer information from the local adapter’s state to the receiving adapter. The enhanced
message includes the client’s blame information for the service entry, blame labels for the service en-
try that was identified in 72, and the client’s confirmation status recorded for the identified service.

This enhanced message is then sent to the receiving adapter using the ENHANCED-SEND rule. The

26

enhanced message is processed by the ENHANCED-RECEIVE rule and transformed back to an unen-

hanced message via the Lower function, which we now describe.

Metafunction lower, takes the following arguments: the name of the contract to check the mes-
sage against (k); whether the sender of the message is confirmed (¢); and the intercepted enhanced
message to “lower” (72). It returns a tuple (0”, m) where o’ is the implicitly returned final updated
state of the adapter, and m is the transformed unenhanced message.

Whereas 11 ft performed contract checks and introduced new blame for service entries, Lower
only updates its internal state based on the state transferred by the sending adapter. After the adapter
state is updated, the enhanced message is transformed to its unenhanced counterpart via the raw
function which simply discards the enhanced message metadata, i.e., if (¢/, m) = Ui ft,(k,c, m,[)

then raw(m) = m.

UNENHANCED INTERACTION

Rule UNENHANCED-SEND applies when an adapter intercepts a message sent by the black box it
wraps to host & where contract_for, (b, m) = (k,x), meaning the destination of the message

is not known to be enhanced due to its confirmation status x." Rule UNENHANCED-RECEIVE fires
when the adapter intercepts an unenhanced message intended for the the black box it wraps, and the
black box’s host & should implement contract family 4.

In either case, the adapter takes a best-effort approach to perform contract checking and provide
as precise as possible blame information. Specifically, the adapter performs the contract checking
and blame propagation that the adapters of the source and the destination of a message would have
performed if they had opted for enhanced interaction. Thus, in both rules, we see that the adapter
uses both metafunctions 14 ft and lower, to emulate enhanced interaction. The confirmation sta-
tus argument is x so that the adapter will send an unenhanced reply for an unenhanced request, as
the receiver may not be able to interpret an enhanced message.

One key difference between rule UNENHANCED-RECEIVE and the two enhanced rules, is that
we use the unknown label { as the label for the sender when calling the two metafunctions, instead
of the adapter’s own label. This is because the adapter, as the recipient of the message, is zot respon-
sible for its contents. As mentioned in Section 2..3.3, the base label } is thus used as the label for all

non-Whip-enhanced services, and when the label of the sender’s adapter is not known.

"Note that it may be the case that the other host is Whip-enhanced, but this fact is not locally known.

27

« function update-1ift,(m,c, se, re, seia,) v function update-lower, (7, c, se, re, seiy)

= if type(m)==reqthen > Request sent 5 blamec [seid] &0 > Init blame for id

5 blame,[se] + {I} > Init blame forse 1: blames[seiq] < blame, (seis) U m.id-blame

P blame, [seiq] < {I} > Init blame for invoked i prov, [seq] < learned

5t prov, [Se] (L from(m) intro 16: if m.id-conf == v then > Id is confirmed

. prov, [sei] &L from(m) intro : confo[sei] < v > Promote to confirmed
Z . s else > Id not known to be confirmed

7 confglre] ¢ > Record confirmation P o

. else > Reply sent 19: confo[seid] + X > Initialize unconfirmed

o blame [seis] < blame, (re) > Initblameforid ™ if type(im) == req then > Receive request

a— o blame,[re] < m.se-blame > Record blame
1o prov, [sei] ¢ se intro 22 confore] ¢ B> Record confirmation

w confg[seid] X > Initialize confirmation for id

Figure 2.11: State update functions

Byrass ADAPTERS

These rules apply in cases where the adapter chooses not to intercept messages, and so the mes-

sages bypass the adapter. This occurs when a Whip-enhanced service communicates with a host &
for which there is either no contract information available or conflicting contract information, i.e.,
contract_for, (b, m) is undefined. The messages are not intercepted by the adapter. Messages by-
pass the adapter rather than getting stuck so that the presence of the adapter does not disturb traffic

to and from the black box.

2.4.5 UPDATING STATE AND ASSIGNING BLAME

In this section we make formal the discussion from Section 2..3.3 about how adapters update their
state when they receive messages and how they keep track of blame information.

All parts of the state (except the immutable specification) are updated as the adapter intercepts
and receives messages. State is updated via the update-11ft and update-Tlower metafunctions,
called from the 11 ft and lower metafunctions, respectively. The update functions take the fol-
lowing inputs as arguments: the message intercepted 72 or 72, the confirmation status ¢ of the other
communication party, the service entry of the request se, the request entry re, and the service identi-
fied in the message se;4. In the case of update-11 ft, it also contains the blame label of the sender of
the message.

The update functions add new mappings using notation f; k] <— v where fis one of the store
projection functions. For example, the result of blame, [s¢] <— visa modified state o’ where the

blame registry contains a mapping se > 0. The final updated state o’ is implicitly returned as

2.8

the first part of the result. We also use an optional assignment syntax f;; [] & pthatadds mapping
Jolk — v]onlyif k & f;. Much of the subtlety of the 11 ft and lower metafunctions is due to the
propagation of blame information which is necessary for correct and precise blame assignment. We
first describe update-11 ft and then update-Tlower.

Figure 2.11 describes the behaviors of the update-11ft and update-Tlower metafunctions,
given as pseudocode’. Conceptually, update-11ft introduces blame information. In essence, it
implements the informal description of tracking blame information in Section 2..3.3. There are two
ways a service entry can be introduced into an adapter’s blame registry. First, if the black box is send-
ing a request, then both the invoked service entry and the identified service entry may be new to the
adapter. That is, the adapter has not previously associated these services with indexed contracts. If
so, the adapter uses its own label as the blame label for the new service entries. This can be seen in
lines 3—4.

Second, if the black box is sending a response, then the identified service entry may be new to the
adapter (lines 8-9). As discussed in Section 2..3.3, the blame labels for the identified service entry are
the blame labels for the corresponding request entry.

Additionally, update-11ft records the confirmation status for the request entry (line 7). That

is, the adapter will send an enhanced reply if and only if it received an enhanced request.

Whereas update-11 ft introduces new blame for service entries, update-Tlower only records
and merges the blame and confirmation information from the enhanced message it received. In par-

ticular, update-Tower performs the following sub-tasks:

* The blame labels for the identified service entry from the sender’s enhanced message are
merged with any existing blame information the receiver had for the identified service entry

(lines 13-14).

* Confirmation status for the identified service is merged. If the sender knows the identified
service is confirmed then the message will contain a confirmation status of v" and the receiver

will update its state to record that confirmation (lines 16-19).

* When processing a request, the server creates a request entry for the client request, recording
the client’s service entry blame (which is equal to the client’s request entry blame). Confirma-

tion information for the request entry is also recorded so that the contract_for metafunc-

"Similar to previous figures, the shaded parts of the diagram relate to metatheoretic properties of Whip and will be
discussed in Section 2.s.

29

tion will be defined when the server sends a reply message (lines 20-22), and ensuring that the

reply message will be enhanced if and only if the request message was enhanced.

* The enhanced message is transformed to its original unenhanced message the sending black

box created via the raw function, which simply discards the enhanced message metadata (line

14).

2.5 CORRECT BLAME

In this section, we establish the key metatheoretic result of WAL: correct blame assignment.” The
pragmatic value of a contract system depends on the correctness of blame assignment. Informally,
Dimoulas et al. [23] define that a contract system assigns blame correctly if, given a value that vio-
lates a contract, it blames the component that vouched that the value meets that contract. They ex-
tend their contract calculus with provenance information and prove that the blame label reported
upon a contract violation matches the provenance of the value that triggered the violation. The
provenance information is not used in contract enforcement, but provides a sound basis for speci-
tying blame correctness.

We use the same approach and extend the semantics of W21 to track provenance. This extension
is straightforward, and the tracking of provenance is meant to be obviously correct. The tracking of
provenance is independent of the creation and propagation of blame information, and provides a
sound basis to specify correct blame. Due to the black-box nature of services in W4, we cannot use
the provenance tracking mechanism of Dimoulas et al. Instead, each adapter records in its local state
provenance information about service entries that reflects how the adapter’s registry was updated.
Provenance information allows us to easily detect which adapters are responsible for introducing
which service entries, and, transitively, for service entries introduced due to the reply from a service
with service entry se, which adapters are responsible for introducing se.

The portions of Figures 2.8 and 2.11 shaded in gray extend J#21 to track provenance. The local
state of an adapter is extended to include provenance map V, which maps service entries to prove-
nance entries. Intuitively, an adapter’s provenance map records for each service entry in the registry
how the service entry was added to the registry. If the adapter learned about the service entry se from
another service, then V(se) = learned. If information about se was introduced because host 2
sent a request, then V(se) = a intro. (Host a is typically the host wrapped by the adapter, but due

to interaction with non-Whip-enhanced services, it may differ; see rule UNENHANCED-RECEIVE.)

'Complete formalisms and proofs are in Appendix A.2.

30

If service entry se;q was introduced due to service entry se identifying se;4 in its reply then V(se;z) =
se intro. The three provenance entries mirror the three ways that service entries can enter an adapter’s
blame registry, described in Section 2.4.4. (i.e., learned, introduced by a request, or introduced by a
reply).

We designed I so that local blame information is, in essence, a summary of provenance infor-
mation. We express this via a blame consistent with provenance judgment P I blame [for se. Intu-
itively, if there is a post-condition violation that involves a service entry se, and P |- blame /for se
holds, then the provenance of se ultimately goes back to /, and so blaming /is consistent with the
provenance information.

More generally, if P |- blame /for se holds, then either /is responsible for introducing se, or
se was introduced by a response from a service with service entry s¢’ and P I blame /for s¢’. The
following rules for the judgment are the base cases for, respectively enhanced interaction and unen-

hanced interaction, corresponding to host « introducing service entry se due to sending a request:

prov,(se) = 4 intro prov,(se) = b intro b+#a
P[mon!(c, P4)] I blame for se P[monl(c, P*)] I blame { for se

The second base case corresponds to when unenhanced interaction means that an adapter can
not know the precise provenance (or blame) for service entry se. This is the only case where Whip
introduces non-precise blame. In any other case blame information pinpoints accurately a set of
black boxes that if a programmer inspects, she will detect the source of the bug.

The inductive case involves blame assigned to a service entry se;g that was introduced by the re-
ply from a service entry se. Intuitively, we should blame whoever introduced se, as se;q is part of the

higher-order result of se. This intuition is captured by the following rule:

prov, (seiq) = se intro P[monYc, P#)] IF blame / for se
P[mon!(c, P4)] I blame / for seiy

Blame consistency with provenance, together with certain reasonable assumptions on the ini-
tial state of adapters, forms a well-formedness predicate which we show is preserved as the process
evolves. Well-formedness of W requires that all blame information in an adapter’s registry is con-
sistent with provenance, which is sufficient to define correct blame. Intuitively, if a well-formed pro-
cess P takes a step and this step results in an adapter in P detecting a contract violation, then (1) for
aviolation of a pre-condition, #/ blames the sender of the request message that caused the viola-
tion since they previously “agreed” to the contract by using it; (2) for a violation of a post-condition,

W2 blames consistently with provenance. Formally, our theorem is:

31

Correct Blame. If well-formed P, = P,[mon(c,, P#)] and P, — P, and P,=P,[mon!(c,, P#)]

and errors,,={le} Uerrors,, then
1. ifle = Pre(se, l,), then

(a) if P, = P[monl(UI,P“ ||m to b)]and
Plmoni(a,, P4) || m’ to b]thenl, =1

(b) if P, = P[monl(cy, P4) || m to 4] and
= Plmoni(c,, P*||m to a)]thenl, =1

2. if le = Post(se,), then ¥/ € L. P, IF blame /for se.

2.6 WHIP IN PRACTICE

We have developed a prototype implementation of Whip. It consists of the adapter described in
Section 2.3 (and formalized in Section 2..4), and an interposition library for redirecting TCP connec-
tions through the adapter. The adapter is about 3,800 non-empty lines of Python and the interposi-
tion library is about 250 non-empty lines of C.

As described in Section 2.3, before deployment, users configure Whip adapters with information
that describes: (i) what is the contract of the Whip-enhanced service the adapter enhances; and (i)
what are the contracts for other well-known services whose interaction with the Whip-enhanced
service the adapter should monitor. Upon deployment, a Whip-enhanced service is linked with the
interposition library. At run time, the library intercepts connect system calls from the service and
contacts the adapter to check whether a new connection should bypass the adapter or not (based on
the adapter’s blame registry). The adapter’s local state (see Section 2.3) is stored in a disk-backed per-
manent store, with an in-memory cache for performance. When a cache miss occurs, the requested
data is fetched to memory if found. We leave garbage collection of on-disk adapter state as future
work but note it can be added without significant changes to Whip’s design: the lifetime of the infor-
mation in the adapter state can be determined from user-provided configuration directives or with
additional constructs in the Whip IDL that specify the scope of a contract.

Whip supports any message format given an appropriate message format plugin. We have imple-
mented plugins for Thrift (in 150 lines of code), REST (100 lines) and SOAP (400 lines). To check
contracts on encrypted communications (i.e., a service using TLS), the adapter and the service it en-
hances can share certificates or use a mutually trusted certificate authority to allow the adapter to

decrypt messages for the black box.

32

We have used Whip to harden the interfaces of three real-world off-the-shelf services: Evernote
(from Section 2.2, the Twitter API, and an online correspondence chess service. We discuss the most
interesting aspects of the case studies in the remainder of this section, and discuss performance in

Section 2.7.

2.6.1 EVERNOTE

The Evernote case study showcases four of the aspects of Whip’s runtime we discuss in context in
Section 2.1: (i) Whip treats the Evernote server and its clients as black-boxes; (ii) Whip is partially
deployed as we cannot enhance the Evernote servers; (iii) Whip does not change communication pat-
terns between the Evernote server and its clients so as not to disrupt their operation; and (iv) Whip
operates both on top of Evernote’s Thrift-based API and its simpler HT'TPS protocol for OAuth
authentication requests.

As in Section 2.2, we designed Whip contracts for Evernote’s API based on its informal docu-
mentation. We use first-order Whip contracts to express a variety of first-order properties similar to
the two first-order properties from Section 2.2: non-empty strings, bounds checks on integers, mal-
formed GUIDs, strings that are too long, missing parameters that could not be marked as required
due to Thrift limitations, and strings not matching certain patterns (e.g., valid MIME type). We use
indexed bigher-order Whip contracts to express properties about the correct use of a multitude of
tokens (similar to the second higher-order property in Section 2.2) despite some of these tokens origi-

nating from OAuth rather than Thrift services.

2.6.2 TWITTER

Twitter’s REST APT" allows access to a user’s tweets and followers, and is representative of many
REST APIs. Its documentation has a series of examples that highlight key properties of the APL
We use Whip contracts to turn these examples into a precise and executable specification. Beyond
the Evernote case study, the Twitter case study showcases that (i) Whip is compatible with the most
popular message format for microservices, REST; and (ii) the Whip contract language allows pro-

grammers to write precise contracts with minimum effort reusing code from Python libraries.

First-order Contracts for Well-formed Data. We employed first-order Whip contracts
to express a variety of properties of arguments and results of operations of the Twitter API. For ex-
ample, the operation to fetch tweets must consume either a user ID or a screen name. We encode

this disjunctive requirement with a pre-condition. Few API libraries actually defensively check this

'https://dev.twitter.com

33

https://dev.twitter.com

requirement but instead rely on the server to report back an error message. In addition, we used a
post-condition to capture that the result of the operation should be a list of length equal to one of
the arguments of the operation (or at most 200 elements).

Some of the properties required careful syntactic checks. Instead of performing these checks our-
selves, we leveraged third-party Python libraries to perform the data validation. The Whip contract
language allows importing packages via a familiar Python syntax from Ximport Y where X is the pack-
age name and Y is the name to import. In one case, dates needed to conform to the RFC 822 stan-
dard, so the contract imports the parsedate_tz function from the rfc822 Python package.

The following Whip contract language snippet exemplifies how we expressed these properties:

from rfc822 import parsedate_tz
service Twitter {
/1.1/statuses/user_timeline(req)
@requires «'user_id’ in req.args or 'screen_name’ in reg.args »
@ensures «
assert type(result) == list
assert (‘count’ not in reg.args or length(result) <= max(200, reg.args.count))

for tweet in result: assert parsedate_tz(tweet.created_at) !'= None

A Higher-order Contract for Valid Tweet IDs. Outside the correct use of OAuth to-
kens, the correct behavior of Twitter operations depends on the correct use of unique tokens that de-
note other types of data, such as tweets. We discuss here an example of such a requirement; retweets
should involve tokens that correspond to actual tweets. That is, for a request
/1.1/statuses/retweet/<id> json(req), id should be the unique token of an actual tweet. Consequently,
a retweet request should use only an id retrieved from a request /1.1/statuses/user_timeline(req) or
similar whose reply contains a list of tokens for actual tweets. The following Whip contract ex-

presses this requirement:

34

service Twitter {
/1.1/statuses/user_timeline(req)

@foreach tweet in « result» identifies Twitter at receiver with index « 'tweet:’” + tweet.id »

/1.1/statuses/retweet/<id>.json(req)
@where index is « 'tweet:’ +id »

@ensures « 'does not exist’ not in result.get(’errors’) »

}

The result of the user_timeline operation identifies that the receiver service, i.e., the service that re-
ceives a request for this operation, implements contract Twitter ('tweet:’ + t.id), where t ranges over the
tokens in the result of the operation. For a retweet operation, the receiver service must implement
contract Twitter('tweet:’ +id), where id is part of the request URL. Otherwise, if the post-condition
of the operation fails, Whip blames the client for incorrectly claiming that the retweet involved an

actual tweet.

A Higher-order Contract for Valid OAuth Tokens. Twitter, like Evernote, uses the
OAuth protocol for authentication. The API describes that OAuth tokens passed as arguments
should originate from an appropriate OAuth service request. We express the validity of OAuth to-

kens in a similar manner to the two higher-order properties of Evernote’s API from Section 2.2:

from urlparse import parse_gs
service TwitterOAuth {
/oauth/access_token(req)
@identifies Twitter at receiver with index « ‘oauth:’ + parse_gs(result.content).get('oauth_token’) »
}
service Twitter {
/1.1/status/user_timeline.json(request)

@where index is « 'oauth:’ + request['headers’].get('Authorization’) »

We use the parse_gs function from the urlparse package to parse the querystring of the resulting

OAuth access token request in order to retrieve the OAuth access token #. The access token is used

35

to identify an indexed contract Twitter(‘'oauth:’ +7), which is later used in a subsequent request for the

user_timeline operation.

2.6.3 XrFcc CORRESPONDENCE CHESS

Xfcc is a popular web service (WSDL) specification for correspondence chess.” The specification
offers a standard for server implementations that manage chess games recognized by the World Chess
Federation (FIDE). The specification describes two operations: GetMyGames returns the status of
all games the user is playing in, and MakeAMove performs a game action (e.g., move a piece, offer a
draw). Beyond the Evernote and Twitter case studies, the Xfcc case study showcases that (i) Whip is
compatible with the standard message format for traditional web services, SOAP (WSDL); and (ii)
Whip is compatible with a diversity of service implementations; (iii) Whip can detect specification
violations in both servers and clients; and (iv) indexed contracts can encode complex conditions for

the successful call of a service operation.

A First-order Contract for Valid PGN Moves. The GetMyGames operation of Xfcc
returns a data structure that represents the status of a game. This data structure includes a moves
field that specifies the history of the moves of the game in Portable Game Notation (PGN) format.
Similar to the validity of dates in the Twitter case study, we used a third-party library to check the va-
lidity of the moves field. The read_game function from the chess.pgn package parses a string contain-
ing the list of moves in PGN format and returns a Python structure representing the game. When
the parsing fails it throws an exception. With this function in hand, we wrote a contract that ensures
that all games are in valid PGN format. The contract succeeds if the read_games function terminates

without throwing an exception:

from chess.pgn import read_game
service Chess {
GetMyGames(username, password)
@ensures «
for gamein result:
try: read_game(game['moves’])

except: return False »

'http://xfcc.org/

36

http://xfcc.org/

A Higher-order Contract for Valid Game IDs. The documentation of Xfcc states
that when a client provides an invalid game ID to MakeAMove the server should return error code
InvalidGamelD. Whip can express this property with a contract analogous to the contract for valid
tweet IDs in the Twitter case study. We discovered that two popular Xfcc servers return an database
error page rather than the documented correct error code. We also found that a popular client was

unable to interpret the return code, making an invalid move look successful to its user.

A Higher-order Contract for Accepting a Draw Only When Allowed. The
documentation states that draw offers are active only for one move and a player can accept a draw
only for a game with an active draw offer. To make a draw offer to an opponent, a player passes True
as the offerDraw argument of the MakeAMove operation of Xfcc. To accept the draw, the opponent
passes True as the acceptDraw argument of their immediate next MakeAMove invocation. If a player
does not follow the protocol for accepting a draw, the service should return the NoDrawWasOffered
error code. Whip can express the compliance of players with the draw protocol with a higher-order
indexed contract. This use of indexed contracts differs from those we have seen so far. While in the
Evernote and Twitter case studies, we used indices to pair the code of an operation with its “environ-
ment,” in the Xfcc case study we used indices to check a property of this “environment.” In more de-
tail, the Chess contract describes that the result of GetMyGames identifies that GetMyGames’s receiver
service implements contracts Chess((g['gameld’], movecount(g), False)) where gameld is the game ID of
each game g in the result of the operation. Additionally, if a game’s drawOffered flag is True (i.e., the
opponent has offered a draw), the receiver service of GetMyGames also implements contract Chess(

(gl'gameld’], movecount(g), True)). The following snippet puts these pieces together:

service Chess {
GetMyGames(username, password)
@foreach gin « result » identifies Chess at receiver with index « (g['gameld’], movecount(g), False) »
@foreach gin « result » identifies Chess at receiver with index « (g['gameld’], movecount(g), True) »

when « g['drawOffered’] == True »

The fact that a service implements Chess((gameld moveCountTrue)) indicates the existence of a draw
offer for the game with ID gameld while the opposite indicates the absence of a draw offer. More-
over, the indices include the number of moves so far in a game, movecount(g), as the “timestamp”

of a draw offer. Thus indexed contracts give us a way to express and enforce draw offers: a client

37

Network Overhead

Latency of Adapter Memory Usage 150

90 ! T ; 350 , : T T
+ Ev_(rerngte + Ev_(remgte— P =
80 + chess ° 300 Chess— 125 2
70 " * H Store Size mm= /x o
T 60 Anwine & s R L 5 201 el — 100 &
€ o e TRAVIV L R SR 00l E 3 5
) ° ° > o 75 3
g % 38 s g 150 o - $
& 30 |ag. %0, . 0 w020 gh P et /¥ 53 R Pt £

o o L Potie L
3 2 Mfonrn- Viap WY e = 10, o g
0] AP aat i 5 5
10 P ‘ =
0 0 pe==”
Ok 10k 20k 30k 40k 50k Ok 10k 20k 30k 40k 50k .
request number request number Evernote Twitter Chess

Figure 2.12: The charts show the time, memory, and network overhead for each case study. The left chart shows the latency of the

adapter as the number of requests increases. Each point is the average of the 250 requests around it. The middle chart shows the

resident set size of the adapter and the dashed lines show the sizes of the store on disk. The right chart shows the average amount
of adapter traffic per operation call. Vertical bars indicate 95% confidence intervals.

can accept a draw at a given time in a game (i.., acceptDraw is True and the game has ID gameld and
moveCount moves so far), only if the receiver service of MakeAMove implements

Chess{(gameld,moveCountTrue)):
service Chess {

MakeAMove(gameld, resign, acceptDraw, movecount, offerDraw, ...)
@where index is « (gameld, movecount, acceptDraw) »

@ensures « result = "NoDrawWasOffered” »

In the event that the player’s opponent has not offered a draw for the game with their last move, the
player attempts to accept a draw, and the post-condition of MakeAMove fails, Whip blames the client

for deviating from the draw protocol.

2.7 PERFORMANCE

To evaluate how Whip impacts the performance of services it enhances, we analyze the time, mem-
ory, and network overhead due to Whip on the case studies from Section 2.6. We developed a test
suite for each case study which exercises all the contracts from Section 2.6. All services are Whip-
enhanced to maximize adapter traffic. Operations that identify a service entry always introduce the
service entry (i.e., always use a new contract index and thus create new service entries in the adapters’

local state, which maximizes local state size). We do not use the actual third-party services for our

38

experiments but instead mock their behavior, i.e., we simulate their behavior with pre-computed
responses for each request. This is for two reasons: (1) mocking services removes several sources of
measurement noise, like service latency variation from background request load, and (2) performing
our experiments on third-party production servers violates their terms of use.

We collect the following measurements for each test. First, we record the time to perform each re-
quest in the test suite and receive a reply for (1) the test client alone, and (2) the client enhanced with
an adapter. The difference between these two measurements yields the latency due to the client’s
adapter per request (adapter latency). Second, we record the amount of memory (RAM and hard-
disk) used by the client’s adapter. Finally, we measure the adapter-to-adapter traffic (not including
the original request or reply) in the TCP stream. We measure only the client’s adapter as it is the hub
for all communication in each experiment.

We ran our experiments on a 3 GHz Intel Core i7 processor with 2 GB of DDR3 memory with
loopback communication. Figure 2.12 shows the experimental results for each test suite. Average
adapter latencies for Twitter, Chess, and Evernote are 22ms, ssms, and soms respectively. To place
these measurements in context, the production versions of the case studies’ services have latencies
approximately 20 times greater than the average adapter latency.” The rate of increase in the disk-
backed store for Twitter, Chess, and Evernote is 6.8kb per request, 1.7kb per request, and 3.3kb per
request respectively. While disk-backed storage will increase without limit, the size of the in-memory
cache is capped. The experimental results show that a cache size of just a few hundred megabytes
suffices to cache adapter information for tens of thousands of requests. Average network overhead
for Twitter, Chess, and Evernote is so bytes, 54 bytes, and 70 bytes per request respectively. Variance
in network overhead comes from the invoked operations identifying different service entries.

The network overhead and the rate of increase in store size depend on how many services each
contract identifies. However, neither latency nor memory usage degrade as the number of requests
increases despite an increasing network overhead and store size. Moreover, network overhead and
store size do not have a dominant effect on latency; Twitter has the largest store and highest average
network overhead yet the lowest latency. Instead, latency depends largely on the efficiency of the
network plugin; the REST plugin uses a more efficient marshaller and handles sockets more perfor-
mantly than the other plugins. Finally, all services in the experiments have a definite finite scope (ac-
cording to their documentation) and so could be safely garbage collected at some point as discussed

in Section 2..6.

"For cxample, see https://dev.twitter.com/overview/status.

39

https://dev.twitter.com/overview/status

2.8 RELATED WORK

Existing frameworks for composing services can enforce higher-order behavioral contracts similar
to Whip’s but assume that services are written and deployed in a particular manner. For example,
CORBA [61], BPEL [40], and Java RMI [83] require all services to use their libraries. Whip sup-
ports compositions of services that do not or only partly use these middlewares with appropriate
message format plugins.

Behavioral Interface Specification Languages (BISLs), such as JML [45], have extensions for spec-
ifying and enforcing higher-order behavioral contracts for communicating components. However,
these languages are tightly coupled with particular component-implementation languages or fami-
lies of languages. For instance, JML is designed for Java programs and has specific features to handle
inheritance. Also, tools based on these languages re-write programs to insert checking probes. Thus
BISLs and their contract checking tools are not language-agnostic. In contrast, Whip and its IDL
are language-agnostic and do not modify services’ code. Some features of Whip’s IDL, such as pre-
and post-conditions, are common with most BISLs. Others, such as identifies, are unique to Whip.
Runtime verification tools, such as Monitor-Oriented Programming (MOP) [15], can in principle
enforce higher-order behavioral contracts for communicating components in a language agnostic
manner (with appropriate plugins). However, building a contract system on top of them requires
first solving the semantic issues Whip solves.

Many techniques exist to enhance the reliability of distributed systems (e.g., [37, 42, 62]) and are
compatible with and orthogonal to Whip. Indeed, modern services are often chosen for organiza-
tional concerns such as loose coupling and scalability, rather than reliability. We focus on functional
correctness of modern service composition. We briefly discuss how Whip affects the failure model of
distributed applications in Section 2..3.

A wide range of frameworks enforce synchronization protocols of communicating components.
For example, finite state machines can constrain the order of WSDL-defined interactions [47] and
web browsing [34] in a manner complementary to that of Whip. BPEL [40] is an expressive spec-
ification language for the orchestration of web services. Enforcement of BPEL, though, relies on a
centralized communication bus for all services in an application. Multi-party session types [36] as-
sume a global coordination protocol that is broken into locally and statically enforceable pieces. Fur-
ther extensions marry multi-party session types with Design by Contract [13]. In general, dynamic
monitoring of multi-party session types shares the same motivation as Whip [38]. Even though, in
principal at least, the combination of session types with contracts and dynamic monitoring leads

to specifications that subsume those of Whip, runtime verification of session types depends on an-

40

notating the source code of or using particular libraries by all components involved in a protocol.
In contrast, the black-box treatment of (legacy) services and partial deployment are key aspects of
Whip.

Closer to Whip, the work of Jia et al. [39] describes the theory of a runtime monitor with precise
blame for higher-order session types. Besides the fact that higher-order session types alone do not
subsume Whip’s higher-order contracts, there are important differences between the mechanism of
Jia et al. and Whip. First, for correct blame, many operations of Jia et al.’s model (e.g., cut and for-
warding) affect the topology of communication introducing indirect message queues. In contrast,
Whip only affects the communication topology locally to each service and introduces no interme-
diate indirection to service communication. Second, for precise blame, the mechanism of Jia et al.
requires that monitors have access to shared state. Whip adapters have access only to local state. Fur-
thermore, Whip adapters do not need to exchange any extra messages to keep their local states in
syng; new information is inferred from or piggybacked onto messages that services exchange. Third,
it is unclear how their mechanism handles legacy services. For example, the use of explicit direction
shift messages due to polarized session types is incompatible with existing message protocols. Whip

is compatible with any protocol built on top of TCP.

2.9 CONCLUSION

Whip enhances modern services with higher-order behavioral contracts to bridge the semantic gap
between simple network protocols and the higher-order properties of services. Whip comes with a
higher-order contract language tailored to the needs of modern services. Moreover, Whip is trans-
parent, suitable for partial deployment, and compatible with popular message formats. Thus, Whip
promotes the correct composition of modern service-oriented applications, including legacy services,

and with correct blame assignment facilitates their debugging and maintenance.

41

Background on LIO and DC Labels

In this chapter we describe the necessary background for Chapters 4 and 5. Restricted privileges and
Clio are based on the information flow control language LIO [77] which uses DC labels [76] as its

policy language.

3.1 DCLABELS

We call the set of all positive propositional formulas in conjunctive normal form CNF; we use the
term formula to range over CNF. The primitive propositions of formulas are principals in the sys-
tem. Principals are application-specific entities; for example they may refer to users in the system.
DC labels [76] are pairs of confidentiality and integrity formulas. Confidentiality formulas describe
who may learn information. Integrity formulas describe who takes responsibility or vouches for in-
formation. Both confidentiality and integrity formulas are in CNF. We assume that operations on

formulas always reduce their results to conjunctive normal form.

GLC°C = CG=(G LOL = L=
GUC, < CANCG, LU <— L VI,
GneC, <= CVCG, LT <— L NI
1 = True T€ = False 1* = False T = True
Figure 3.1: Confidentiality lattice Figure 3.2: Integrity lattice

42

<CI>[I> C <C27[z> — GLC°Cand [C'],

(C,L)U(C, L) = (GU°C, L)

(C,L)N{(C,, L) = (GG, LML)
ccn) =c I(C, D) =1

Figure 3.3: Security lattice for DC labels

(Alice, Charlie) IZ (Alice, Charlie A Alice) (Alice A Bob, Charlie) IZ (Bob, Charlie)

Figure 3.4: Downgrading integrity Figure 3.5: Downgrading confidentiality

Both confidentiality formulas and integrity formulas form lattices—see Figures 3.1 and 3.2 for
their formal definitions. We interpret C; C° C, as: C, is at least as confidential as C;. For instance,
Alice V Bob C°¢ Alice, which means that data readable by either Alice or Bob is less confiden-
tial than data readable only by Alice. Conjunctions of principals represent the multiple interest of
principals to protect the data. Conversely, disjunctions of principals represent groups wherein any
member may learn the information. The integrity lattice is dually defined [11]; we interpret ; =* 7,
as: [is at least as trustworthy as 7,. For example, Alice A Bob C" Alice, which indicates that data
vouched for by Alice A Bob is more trustworthy than data vouched for only by Alice. In this case,
conjunctions of principals represent groups whose members are independently responsible for the
information. For example, data with integrity Alice A Bob means that Alice is completely respon-
sible for the data, and so is Bob. Conversely, disjunctions of principals represent groups that collec-
tively take responsibility for the information, however, no principal takes sole responsibility. For
example, data with integrity Alice V Bob means that Alice and Bob collectively are responsible for
the data, i.e., both may have contributed to, or influenced the computation of the data.

Formally, a DC label is a pair of a confidentiality formula Cand an integrity formula /, written
(C, I). DC labels form a product lattice given in Figure 3.3. The C relation is called the can-flow-to
relation because it describes information flows that respect confidentiality and integrity formulas.

We write C(-) and I(-) for the projection of confidentiality and integrity components, respectively.

DOWNGRADING

In the DC label model, information from one security label is downgraded to another security label
if the relabeling does not satisfy the can-flow-to relation. Consider the pair of security labels in Fig-

ure 3.4. The first security label enforces the policy that data is vouched for by Charlie. The second

43

(Col) 5p (G L) <= G TS Coand [, CL 1,
where C, E; C, <= GLC°CLUp
LTI < LTpC' L
Figure 3.6: Relation can-flow-to-with-privilege-p
security label enforces the policy that data is vouched for by Charlie and Alice, therefore a secure
system cannot permit data to flow from the sources protected by the first policy to sinks protected
by the second policy. This downgrade is an endorsement, since it downgrades only integrity, i.e., it
makes a value more trustworthy. Dually, a declassification downgrades only confidentiality, i.e., it
makes a value less confidential. Consider the pair of security labels in Figure 3.5: The first security
label enforces the policy that data is confidential to Alice A Bob. The second security label enforces
that data is confidential to Bob. Permitting data to flow from a source protected by the first policy
to a sink protected by the second policy violates the confidentiality expectations of the source. And
s0, downgrading is considered an #nsafe operation as the relabeling may violate the the security pol-
icy of the information. In practice, downgrading is not permitted during normal execution of the

program and can only be done under special privileged circumstances.

PRIVILEGES

Practical systems must permit some downgrading. The DC label model controls downgrading
with privileges, where every principal has an associated privilege, and a principal’s privilege enables
downgrading. More precisely, given principal p, the can-flow-to-with-privilege-p relationship, writ-
ten C,, describes the information flows permitted with p’s privilege—see Figure 3.6. Observe that
both downgrading examples from the previous section are now permitted by the can-flow-to-with-
privilege relationship for the principal Alice, i.e., (Alice, Charlie) Cajice (Alice, Charlie A Alice)
and (Alice A Bob, Charlie) Cajice (Bob, Charlie).

3.1.1 FLOATING LABEL SYSTEMS

DC labels are usually part of floating label systems like L1IO [77], Hails [30], and COWL [79]. Such
systems associate a current label, Ly, with every computational task—this label plays a role similar
to the program counter (PC) in more traditional language-based IFC approaches [69]. The current
label denotes the fact that a computation depends only on data with labels bounded above by L.
When a task with current label Z,, observes information with label L 4, the current label after ob-
servation, L;,C, must “float” above both the previous current label and the observed information’s
label, i.e., L;,c = Ly U L4. Importantly, and to respect the security lattice, the current label restricts

44

the subsequent writes to communication channels. Specifically, a task with current label Z,, is pre-
vented from writing to channels protected by formula L 4 if L, £ L.

Floating-label systems typically use some run-time representation of principals’ privilege, and
downgrading operations require the run-time representation of a principal p’s privilege to be pre-
sented in order to use the can-flow-to-with-privilege-p relation, =,. Thus, the run-time represen-
tation of a principal’s privilege acts like a capability to downgrade that principal’s information. We
write pIj for the run-time representation of the privilege of principal p, and refer to this value as a raw

privilege (to contrast it with the restricted privileges that are introduced in Chapter 4).

3.2 LIO

LIO is a dynamic, floating-label approach to language-based information flow control [77]. LIO
uses Haskell features to control how sensitive information is used and to restrict I/O side-effects. In
particular, it implements an embedded language and a runtime monitor based on the notion of a
monad, an abstract data type that represents sequences of actions (also known as computations) that
may perform side-effects. The basic interface of a monad consists in the fundamental operations
return and (>>=) (read as “bind”). The expression return x denotes a computation that returns the
value denoted by x, performing no side-effects. The function (>>=) is used to sequence computa-
tions. Specifically, 7 3= Ax.7 takes the result produced by # and applies function Ax.7 to it (which
allows computation 7 to depend on the value produced by 7). In order to be useful, monads are usu-
ally extended with additional primitive operations to selectively allow the desired side-effects. The
LI0 monad is a specific instance of this pattern equipped with IFC-aware operations that enforce
security.

LIO, like many dynamic IFC approaches (e.g., [16, 67, 91]), employs a floating label. Security
concerns are represented by DC labels. The runtime monitor of LIO maintains as part of its the
state the current label of computation. LIO operations adjust this label when sensitive information
enters the program and use it to validate (or reject) outgoing flows.

Once the current label within a given computation is raised, it can never be lowered. This can be
very restrictive, since, for example, as soon as confidential data is accessed by a computation, the com-
putation will be unable to output any public data. To address this limitation, the toLabeled opera-
tion allows evaluation of an LIO computation 7 in a separate compartment: toLabeled [m will run
m to completion, and produce a labeled value <v : [>, where v is the result of computation 7, and /
is an over-approximation of the final current label of 7. Note that the current label of the enclosing

computation is not affected by executing toLabeled / 7. In general, given a labeled value <v: [>, label

45

Ground Value: v = true|false | () || (v, 0)
Value: vi= v|(v,0) | x| et] O] <v:l>
Term: tu= v|(t,1) | tt|fixt|if rthen relse ¢
laUsL |6aNs |6 Ce
|returnz|z>=1t
| label £ £ | labelOf # | unlabel #
| getLabel | getClearance | lowerClearance ¢
| toLabeled 77| {' ¢}
| store z¢ | fetch, ¢
Ground Type: T ::= Bool | () | Label | (7, T)
7| (r,7) | T — 7| LIO T | Labeled T

Type: T

Figure 3.7: Syntax for LIO values, terms, and types.

lis an upper bound on the information conveyed by v. Labeled values can also be created from raw
values using operation label, and a labeled value can be read into the current scope with operation
unlabel. Creating a labeled value with label / can be regarded as writing into a channel at security level

L. Similarly, observing (i.e., unlabeling) a labeled value at /is analogous to reading from a channel at

L

LIO SsECURITY GUARANTEES LIO provides a termination-insensitive zoninterference-based secu-
rity guarantee [31]. Intuitively, if a program is noninterfering with respect to confidentiality, then
the public outputs of a program reveal nothing about the confidential inputs. More precisely, an
attacker A that can observe inputs and outputs with confidentiality label at most /4 learns nothing
about any input to the program with label / such that / [Z 4. Similarly, a program is noninterfering

for integrity if an attacker that can control untrusted inputs cannot influence trusted outputs.

3.2 LIO CaLcuLus

This section provides a description of the LIO language and its formalization.

LIO carcurus LIO is formalized as a typed A-calculus with call-by-name evaluation, in the same
style as Stefan et al. [77]. Figure 3.7 gives the syntax of LIO values, terms, and types.

Security labels have type Label and labeled values have type Labeled 7. Computation on labeled

46

values occur in the LIO monad using the return and (>>=) monadic operators. The nonterminals
0 and }{"" ¢} are generated only by intermediate reduction steps and are not valid source-level
syntax. For convenience, we also distinguish values that can be easily serialized as ground values, v.
Ground values are all values except functions and LIO computations.

Static type checking is performed in the standard way. We elide the typing rules = 7 : 7 since they
are mostly standard’. LIO enforces information flow control dynamically, so it does not rely on its
type system to provide security guarantees.

The semantics is given by a small-step reduction relation — among LIO configurations (shown
in Figure 3.8)*. Configurations are of the form (lyr, kir | £), where [y is the current label and 7
is the LIO term being evaluated. Label /i, is the current clearance and is an upper bound on the
current label /yr. The clearance allows a programmer to specify an upper bound for information
that a computation is allowed to access. We write c — ¢ to express that configuration ¢ can take
a reduction step to configuration ¢’. We define —* as the reflexive and transitive closure of —.
Given configuration ¢ = (lr, Lir | £) we write PC(c) for Ly, the current label of ¢.

Rules RETURN and BIND encode the core monadic operations. In rule LABEL, the operation
label [v returns a labeled value with label /holding v (<v : [>), provided that the current label flows
t0 [(leur T 1) and [flows to the current clearance (/ T /g;). Note that we force the second argument
to be a ground value, i.e. it should be fully normalized. Rule UNLABEL expresses that, given a labeled
value /v with label /, the operation unlabel /v returns the value stored in /v and updates the current
label to [y LI/, to capture the fact that a value with label / has been read, provided that this new label
flows to the current clearance (/ £ /g,). The operations getLabel and getClearance can be used to
retrieve the current label and clearance respectively.

Rules TOLABELED and RESET deserve special attention. To evaluate tolLabeled /, #, we first check
that /, is a valid target label ([oyy C [, T [gr) and then wrap #in a compartment using the special syn-
tactic form 53‘: {% £}, recording the current label and clearance at the time of entering toLabeled and
the target label of the operation, /,. Evaluation proceeds by reducing #in the context of the compart-

HO_ Next, the rule RESET evaluates the term ﬁ“{lz #H° }, first checking
clr

ment to a value of the form ¢,
that the current label flows to the target of the current toLabeled (yy & 1,). Finally, the compart-
ment is replaced by a normal label operation and the current label and clearance are restored to their

saved values.

"Complete definitions given in Appendix C.r.3.
*The rest can be found in Appendix C.r.4.

47

LABELOF

(leurs Lot | 1abelOf (<z:4>)Y — {lour, Ltr | &)

ReETURN
{leur, Le | return) — (leur, L | 2°)
Binp
<lcur7 lclr | [ILIO >= tz> — <lcur7 lclr ‘ ([z [1)>
LABEL
lcur E 11 Zx E chr
(leurs ke | 1abel &) — (leur, Lr | return (<v:L>))
UNLABEL
lcur U ZI == lz lz E lclr
(leurs Lir | unlabel (<2,:4>)) — (L, la; | return 2,)
ToLABELED
lcur E lz 12 E lclr
(leur, ke | toLabeled L £) — (leur, ke | (2 {" £3)
RESET

lcur E 12
(leur, L | Z{lz oY) — (L, L | 1abel L, £)

Figure 3.8: LIO language semantics (selected rules).

LABEL FORMAT LIO is parametric in the label format, but

for the purposes of this disseratation, we use DC labels [76] A CA 4, &= A = A,
extended with a third component to model availability poli- A LA A, = AV A,
cies. Availability policies also form a lattice, defined in Fig- AT A, = AN A,
ure 3.9. A label (I, /;, [,) represents a policy with confidential- 14 = False T4 = True

ity L, integrity /;, and availability Z,. Information labeled with
(L, l;, I;) can be read by £, is vouched for by /; (as described

in the previous section), and is hosted and made available by

Figure 3.9: Availability lattice

Lz. We write A () for the projections of the availability component in . Each component is a con-
junction of disjunctions of principal names, i.e., a formula in conjunctive normal form. In terms of
availability, a disjunction 4 V B means that one of 4 or B can deny access to the data. Conjunction
A N Bmeans that 4 and B can jointly deny access to the data together for availability.

Data may flow between differently labeled entities, but only those with more restrictive poli-
cies: those readable, vouched for, or hosted by fewer entities. A label (I, £, /,) can flow to any la-

bel where the confidentiality component is at least as sensitive than £, the integrity component is at

48

least as untrustworthy as /;, and the availability is no more available than [, i.e. i T /, if and only if
C(L) = C(L),I(h) = I(L),and A(L) = A(L). We use logical implication because it
matches the intuitive meaning of disjunctions and conjunctions, e.g., data readable by 4 \V Bis less
confidential than data readable only by .4, and data vouched for by 4 A Bis more trustworthy than
data vouched for only by A.

In Chapter 4, we consider computations that work on labels that are pairs of confidentiality
and integrity labels, whereas in Chapter s, we consider labels that are triples of of confidentiality,

integrity, and availability.

49

Restricted Privileges for Downgrading

4.1 INTRODUCTION

Information-flow control (IFC) systems track the flow of information by associating lzbels with data.
Disjunction Category Labels (DC labels) are a practical and expressive label format that can capture
the security concerns of principals. IFC systems and DC labels can provide strong, expressive, and
practical information security guarantees, preventing exploitation of, for example, cross-site script-
ing and code injection vulnerabilities [30, 41, 69, 79, 90].

IFC systems often need to downgrade information: declassification downgrades confidentiality,
and endorsement downgrades integrity. Downgrading of DC labels occurs via operations that re-
quire unforgeable capability-like tokens known as privileges. Unfortunately, DC labels offer no
methodology to protect developers from the discretionary (i.e., unrestricted) exercise of privileges—
even a minor mistake in handling privileges can compromise the whole system’s security. For exam-
ple, we found a one-line vulnerability in an existing DC label application written by experts that
enabled confidential information to be inappropriately released, thus violating the application’s in-
tended security properties.

To address this, we introduce restricted privileges: privileges that are limited in their ability to
declassify and endorse information. By declaratively restricting the use of privileges, developers can
reason about the security properties of the system, regardless of the code that may possess or use the
restricted privileges. Thus, the developer’s local declaration of restrictions enables the enforcement

of global information security guarantees.

50

We present two kinds of restricted privileges: bounded privileges and robust privileges. A bounded
privilege imposes upper and lower bounds on the DC labels of data that is declassified or endorsed
using that privilege. Robust privileges avoid the accidental or malicious use of privileges to declassify

or endorse more information than intended, achieving a property known as robustness [6o, 88].

Bounded Privileges. A bounded privilege wraps an unrestricted privilege with two immutable
labels that indicate upper and lower bounds for downgrading. DC labels form a lattice structure (de-
scribed in Section 3.1), and thus a bounded privilege restricts where in the lattice downgrading may
occur. A bounded privilege also has a mode, indicating whether the bounded privilege may be used
for declassification, endorsement, or both declassification and endorsement.

In terms of confidentiality, the upper bound limits the confidentiality of information that can
be declassified using the privilege, and the lower bound limits the confidentiality of the informa-
tion after declassification. For example, suppose principal fb.com passes a bounded privilege to
gogl. com. If the lower bound of the bounded privilege is the label “gogl.com” then the privilege
can be used to declassify information only from fb.comto gogl.com. Even if gogl.com passes
the bounded privilege to another domain, say evil. com, the bounded privilege cannot be used to
declassify information from fb.comto evil.com.

In terms of integrity, the upper bound of a bounded privilege indicates the least trustworthy level
of information the privilege can be used to endorse, and the lower bound limits the integrity of the
information after endorsement. For example, by setting the upper bound appropriately, fb.com
can create a bounded privilege that can be used to endorse data only from gogl. com, and cannot be

used to endorse other data, say from evil.com.

Robust Privileges. The security of a system might be at risk if an attacker is able to influence
the decision to declassify or endorse information, or can influence what information is declassified.
For example, consider a routine that receives a secret pair (username, password) and uses a priv-
ilege to declassify the first component of the pair. If an attacker (from another system component)
can influence the pair to be (password,username) and trigger the declassification, the password
will be leaked.

Robust declassification [88] and qualified robustness [60] are end-to-end semantic security guaran-
tees that ensure that attackers are unable to inappropriately influence what information is revealed
to them. These security conditions can be enforced by restricting declassification and endorsement
operations. A robust privilege wraps a privilege and ensures that it is used only in declassification

and endorsement operations that satisfy appropriate robustness checks.

This chapter makes the following contributions:

SI

(i) We introduce bounded and robust privileges to limit the exercise of privileges for declassifica-
tion and endorsement. (ii) We present a semantic characterization of how bounded privileges and
robust privileges restrict declassification and endorsement operations. (iii) We define run-time se-
curity checks for bounded privileges and robust privileges that soundly and completely enforce the
semantic characterization of restricted downgrading operations. The run-time checking for robust
downgrading is effectively a weakening of the underlying unrestricted privilege: a surprisingly sim-
ple characterization of robustness. (iv) We illustrate the applicability of bounded and robust privi-
leges via a case study. Moreover, use of restricted privileges identified a vulnerability in an existing
DC label-based application.

This chapter is organized as follows. Section 4.2 characterizes downgrading operations that use re-
stricted privileges, and Section 4.3 provides the corresponding enforcement. Section 4.4 describes
security properties in the presence of multiple restricted privileges. Case studies are given in Sec-

tion 4.5. Section 4.6 examines related work and Section 4.7 concludes.

4.2 SECURITY DEFINITIONS

If a system contains raw privilege p*, then downgrading of data with policies involving p depends
entirely on how p* is used in the system. Reasoning about what downgrading occurs may require
reasoning about global properties of the system. Indeed, we found a vulnerability in a Hails example
application [30] of a web-based rock-paper-scissors game where use of a raw privilege was localized
to one component, but arbitrary data could be passed to this component to be downgraded. This
motivates our work to restrict privileges, and enable local reasoning about downgrading that may
occur in a system.

A restricted privilege is a raw privilege “wrapped” with limitations on its use. These limitations
enable sound reasoning about the downgrading that may be performed using the restricted privilege,
even if arbitrary code uses the restricted privilege. Thus, local reasoning that ensures p* is always ap-
propriately restricted provides global guarantees about the downgrading that can occur with respect
to policies involving p.

We present two kinds of restricted privileges, bounded privileges and robust privileges, which pro-

vide simple declarative limitations on the use of raw privileges.

BoOUNDED PRIVILEGES

A bounded privilege wraps a raw privilege with downgrading bounds and a downgrading mode. A

downgrading bound is a pair of security lattice labels Lp;g, and Ly, that provide upper and lower

52

A= (False, True)

information
flow
(%)

L]
(AvB,AAB)
I = (True, False)

Figure 4.1: Bounded downgrading

bounds on downgrading, and the mode indicates whether the bounded privilege can be used to

both declassify and endorse, only to declassify, or only to endorse.

Definition 1 (Downgrading bounds). An operation that downgrades from security policy
Liyom to security policy Ly, in a computational context with current label Ly, satisfies downgrading
bounds Lyigy and Liy, if and only if (Lgom U Lpe) © Lpigh and Ligy E (Lto U Lyc)

Definition 2 (Bounded privileges). A bounded privilege with bounds Lyig, and Ly, and
Lpigh
Llow

]7ti that satisfy downgrading bounds Lyg, and Liy,. Mode m is one of de, d, or e. Declassification

mode m on privilege pﬁ, written ”’[pﬁ] , can be used only for downgrading operations with privilege
operations are permitted only if the mode is de or d; endorsement operations are permitted only if the

mode i3 de or e.

Figure 4.1 shows a visualization of bounded downgrading. The security lattice on the left is over-
laid with a visualization of where bounded downgrading can occur (shaded) with respect to bounds

Lpig, and Lyy,. The security lattice on the right shows an example of what labeled values can be de-

classified (shaded) with a bounded declassification privilege d [pﬁ]lg;’f on privilege pﬁ with bounds
Lpigh = (AANB,AV B)and L;,,, = (AV B,AAB).

Information typically only flows according to the safe information flow relation C. However,
downgrading introduces new flows. Bounded privileges, however, limit the number of new flows in-
troduced. As a result, in essence, the confidentiality lattice has collapsed C(ZLpig,) and C(Ljpy) and
all points in between: information that has confidentiality up to C(Lpg,) may be declassified to con-
fidentiality C(Zjs,)—all other points in the confidentiality lattice are not affected. Guarantees for
endorsement with respect to bounded privileges are similar, but for integrity instead of confidential-
ity.

Policy: Only Bob controls Alice’s privilege: Principal Alice allows Bob to declas-

sify her data provided that Bob vouches for the data and the decision to declassify. In other words,

53

information labeled with Alice can be declassified only after endorsement by Bob. This property
can be captured by a bounded privilege with mode d and bounds: Ly, = (T, Bob), Lin, =
(L€, Bob). If the privilege is used to declassify information that is not endorsed by Bob or in a
context where the current label is not endorsed by Bob, then the declassification fails. In general,
data must be vouched for by Bob (e.g., by using Bob* or another restricted privilege) before the
bounded privilege for Alice can be used. For example, if a computational task has a current label
Ly. = (Alice, Bob Vv Charlie), the current label must be endorsed by Bob first. By endorsing the
current label, Bob effectively vouches for any influence Charlie may have had on the computational
task.

(Te, 1)
(L,
requires that the integrity of data being declassified is T, i.e., data that no principal takes responsi-

Policy: “An anonymous source said...”: The bounded privilege ¢[Alice?]

bility for. Alice may wish to impose this restriction on declassification involving data confidential to
her to ensure that she has plausible deniability regarding the source of the data released. That s, the

bounded privilege can not be used to declassify data for which Alice is explicitly responsible.

RoOBUST PRIVILEGES

Robustness [60, 88] is a semantic security condition that limits downgrading based on which princi-
pals might benefit from the downgrading, and which principals have influenced the data to down-
grade and the decision to downgrade.

Consider a declassification of information from a source protected by label Z,, to a sink pro-
tected by label Z;,. A formula 4 (representing a principal or party of principals) will benefit from

the declassification if A cannot read from the source, but can read the sink; i.e.,
C(Lpom) L¢ Aand C(Ly,) = 4

A robust declassification does not permit any principal that benefits from it to influence either the
decision to declassify or the data to declassify. 4 influences the decision to declassify if 4 C* 1(Ly,),
and A influences the data to declassify if 4 E' I(Lpom)-

Definition 3 (Robust declassification). A4 robust declassification using privilege p* from a
source protected by Lpom to a sink protected by Ly, in a computational context with current label Lp,
is a declassification (., C(Lgom) &p C(Ly)) where VA € CNF.C(Ly) T AN C(Lgom) £°
A= AL (L) A AL T(Lom)-

For endorsement, a principal benefits if it may be held responsible for information from the

54

o
(ANB, A

Figure 4.2: Robust declassification

source but is not held responsible for information from the sink. In other words, .4 benefits from
an endorsement if A4 gets absolved of responsibility for a value, i.e., 4 E' I(Lpom) A A L' 1(Ls).
Robust endorsement does not permit principals that benefit from it to influence the decision to en-

dorse.

Definition 4 (Robust endorsement). A robust endorsement using privilege p* from a source
protected by Lpom to a sink protected by Ly, in a computational context with current label Ly, is an
endorsement (i.e., I(Lom) T 1(Ls,)) where VA € CNF.A T I(Lgm) N A L' (L) = A L
I(Lpc).

A robust privilege is a privilege that can only be used for robust downgrading operations.

Definition 5 (Robust privilege). A robust privilege with mode m on privilege p*, written
rbst™ {p*}, restricts downgrading operations where it is used to those that are robust for p*. Mode m is
one of de, d, or e. Declassification operations are permitted only if the mode is de or d; endorsement

operations are permitted only if the mode is de or e.

The definitions of robust declassification and endorsements both quantify over all formulas 4 in
the (possibly infinite) set CNF. In Section 4.3, we consider how to implement efficient checks that
do not use universal quantification.

Figure 4.2 shows a visualization of where robust declassification is allowed for a given robust priv-
ilege. The security lattice on the left is overlaid with a visualization of where a value with label L,
can be declassified to (shaded line) using a robust declassification privilege. (Note that the current
label . is not included in the diagram for brevity.) The dashed line at 7 represents the boolean for-
mula for the integrity of the labeled value, that covers points Ly, and Lgom. Ligw is one of the low-

est points where Lg,, can be declassified to while still being a robust declassification, i.e., Ljpw E Ly,

55

Note that with robust declassification, the integrity is re-interpreted in terms of confidentiality.
That s, the integrity of the label of the value for declassification (together with the integrity of the
current label of the process) is used as a lower bound for declassification. Intuitively, those who in-
fluence a declassification should not learn from i.

In the right hand side of Figure 4.2, the shaded line indicates to where a robust privilege may de-
classify the labeled value (A A B, A). The declassification is robust if A is not able to learn from the
declassification. As a result, the value could not be declassified to (A V B, A) as A would learn from

a declassification that it influenced. In contrast, it is robust to declassify it to (B, A).

4.3 ENFORCEMENT FOR ROBUST PRIVILEGES

In this section we describe enforcement mechanisms for restricted privileges that satisfy their seman-
tic characterizations described in Section 4.2. We have implemented these mechanisms in LIO and
use them in our case study (see Section 4.5).

When a bounded privilege (Definition 2)) is used at run time, it is simple to check that the down-
grading operation satisfies the appropriate bounds, since the labels relevant to the downgrading
(Lfroms Ltos and L) are all available at run time, and the label ordering relation can be easily checked
dynamically.

Robust privileges (Definition s) impose restrictions on downgrading operations which quantify
over formulas 4. However, attempting to explicitly check each possible formula .4 at run time is
not feasible. We can however, derive simple and efficient run-time checks that are sound and com-
plete with respect to their semantic characterizations. These checks are inspired by Chong and Mey-
ers [18], who provide run-time checks for robustness that are sound but not complete.

The following theorem shows that the semantic characterization of robust declassification (Defi-

nition 3) is equivalent to two confidentiality-policy comparisons involving only Zgom, Lz, and L.

Theorem 6 (Robust declassification check). A declassification using privilege p* from a
source protected by Lo to a sink protected by Ly, in a computational context with current label Ly,
is robust if and only if C(Lgem) T5 C(Ly), C(Lpom) 5 C(Lyy) U I(Lpc), and C(Lpym) EC
C(Lto) U I(Lpyom)-

The run-time check ensures that if there is any formula 4 that benefits from the declassification
(C(Lpom) L Aand C(Ly) E€ A) then A L' 1(Ly) (or, equivalently, [(Ly) £° A), and sim-
ilarly that 4 (Z' I(Lfym). Thus, the run-time check converts a comparison of integrity policies to

a comparison of integrity policies that does not involve 4. Further, note that this check is complete:

the check will pass if and only if the declassification is robust.

56

The next theorem describes a simple run-time check for robust endorsement.’

Theorem 7 (Robust endorsement check). 4n endorsement using privilege p* from a source
protected by Lpom to a sink protected by Ly, in a computational context with current label Ly, is ro-
bust (Definition 4) if and only if I Lgom) T 1(Ly,), and 1(Lpe) TV I(Lpom) E 1(Lso).

The run-time check that all formulas .4 that may be responsible for either the current label (4 C*
I(Lpc)) or the data itself (4 CF H(Lfmm)) should also be responsible for the data after endorsement
(AT I(Ly)).

ALTERNATIVE FORMULATION

In DC labels, privileges can be arbitrary formulas, which can be stronger or weaker than privileges
for individual principals. For example, a privilege for A A B can downgrade more information than
a privilege for A or B alone, whereas a privilege for A V B can downgrade less information than a
privilege for A or B alone. Leveraging this feature, we show how robust downgrading can be seen
(and enforced) as normal downgrading operations that use a weakened privilege. That is, the privi-
lege used in a downgrading operation is weakened so as to permit all and only robust downgrading
operations.

The next corollaries follow from Theorems 6 and 7 and the definition for the can-flow-to-with-

privilege-p relation.?

Corollary 8. A declassification using raw privilege p* from a source protected by Lyom to a sink
protected by Ly, in a computational context with current label Ly is robust (Definition 3) if and only

Z'J[C(Lfrom) E; \Vi H(Lﬁ'ﬂm) \Vi]I(Lp[) C(‘Lto)
This indicates that robust declassification can be achieved by simply weakening privilege p* with

the integrity labels of the current label and the data to be released, i.., p V I(ZLpom) V I(Lyc). Robust

endorsement has a similar corollary.

Corollary 9. An endorsement using raw privilege p* from a source protected by Liyom to a sink

protected by Ly, in a computational context with current label Ly is robust (Definition 3) if and only
%.}F]I(Lfram) E; Vv I(Lye) H(Lto)-
The current implementation of DC labels [76] provides the ability to infer appropriate Ly, labels

of downgrading operations given a privilege p. By expressing the runtime checks for robust down-

grading operations as a standard downgrading operation with a weakened privilege, we can take

"Proofs of Theorems 6 and 7 are in Appendix B.
*The proof of Corollary 8 is in Appendix B; the proof of Corollary ¢ is similar.

57

Bounded

Endorsement
{]
Lfrom
A Bounded
LY Declassification

° Lto

Figure 4.3: Multiple bounds.

advantage of this feature and automatically infer a suitable L;, label if one exists. This reduces the

burden on the programmer.

4.4 INTERACTION AMONG RESTRICTED PRIVILEGES

We can extend restricted privileges to allow them to be composed, i.e., by allowing bounded privi-
leges and robust privileges to wrap around other restricted privileges, as well as raw privileges. The
guarantee provided by the composition of restricted privileges is the intersection of their individ-
ual guarantees. For example, a bounded privilege composed with another bounded privilege will
require that downgrading operations satisfy the bounds of both privileges. A bounded privilege
composed with a robust privilege (and vice-versa) requires the downgrading both to be robust and
satisfy the downgrading bounds. Robust privileges are idempotent: a robust privilege composed
with a robust privilege will simply require all downgrade operations to be robust.

Privileges might also interact because a system has multiple privileges available. Unlike composed
privileges (which further restrict possible information flows), multiple privileges enable additional
information flows. In the remainder of the section, we discuss the guarantees that result from the
use of multiple restricted privileges. In the accompanying figures, bounded privileges are depicted
as a shaded rectangle corresponding to their bounds. Robust declassification privileges are depicted
as a pair of dashed lines: one line represents the integrity of the source and the other line represents
the lower bound to which data may be declassified. Labels are depicted as points along with their

names.

BOUNDED DECLASSIFICATION AND BOUNDED ENDORSEMENT Figure 4.3 depicts two bounded

privileges, one for declassification and one for endorsement, as well as a label, Lfyom that is outside

58

Figure 4.4: Bounded and robust declassification.

the bounds of the declassification privilege. Because the bounds of the privileges overlap, data can
transitively flow from Lg,, to Ls. The endorsement privilege enables data from Zg,, to be en-

dorsed to L'. The bounded declassification privilege can then declassify data from L’ to Ly,.

BOUNDED DECLASSIFICATION AND ROBUST DECLASSIFICATION Figure 4.4 depicts two de-

classification privileges, one robust and one bounded, and a label that is outside the bounds of the
bounded declassification privilege. Neither privilege alone permits a flow from L, to Ly, How-
ever, when used together, the robust declassification privilege permits declassification of data from
Lfyom to I’ and the bounded declassification permits a flow from L’ to Ly,, completing a flow from

Lfrom t0 Ly.

ENDORSEMENT AND ROBUST DECLASSIFICATION In a system with unrestricted endorsement,
robust declassification provides almost no protection against attackers influencing what they learn.
Intuitively, the endorsement of data by p can make the data trustworthy enough to make a subse-
quent declassification robust. Consider a declassification of a value from label Lgp = (ANB,A)
to L = (A, A) using the robust privilege 7b5t%{B*}. This declassification is not robust: principal
A, who benefits from this declassification, may be held responsible for the value, i.c., A may have
decided what gets declassified. However, an unrestricted endorsement privilege B* could be used to
endorse the value—effectively endorsing any possible influence by A. In other words, (AA B, A) can
be endorsed to (A A B, B), and a subsequent declassification from (A A B, B) to (A, B) is robust.
Bounded endorsement effectively limits the aforementioned deletrious effects of unrestricted
endorsement to the bounded area of the lattice, Figure 4.5 depicts this situation. Besides mitigating

the effects of unrestricted endorsement, bounded endorsement is useful to relax robust declassifica-

59

Figure 4.5: Bounded endorsement and robust declassification.

tion so that it succeeds for principals collaborating in achieving a common goal—see, for example,

Section 4.5.

BOUNDED AND ROBUST DECLASSIFICATION Figure 4.4 shows the guarantees when a robust
declassification-only privilege (i.e., rbst® {pﬁ}) and a bounded declassification-only privilege (i.c.,
d [pﬁ]]]:;:’ih) for the same principal are both available in the system. Intuitively, p’s information can
be declassified from Lgy,to L' using the robust privilege. The information can then be declassi-
fied again to L, using the bounded privilege, even though L, is above the threshold imposed by
robust declassification (i.e., the lowest possible label that robust declassification could declassify la-
bel Lgom). Thus, the presence of a bounded declassification-only privilege can bypass (some of) the

guarantees provided by robust declassification.

SEVERAL BOUNDED PRIVILEGES ~Multiple robust privileges for the same principal do not add any
additional complexity, as all robust privileges are equivalent (up to their modes). Bounded privi-
leges, however, may differ on the bounds they impose. The presence of multiple bounded privileges
in a system for principal p collapses the label lattice for principal p in complex ways. For instance, the
diagram of Figure 4.3 illustrates an example where there is a bounded endorsement-only privilege
and a bounded declassification-only privilege with different bounds. It may be possible for a value
labeled L4, to be relabeled to Ly, via an endorsement to L followed by a declassification. Thus,
labels between L, and L' and between L’ and Ly, are effectively collapsed, since the bounded priv-
ileges allow a value with any of these labels to be relabeled to any other of these labels. More gener-
ally, as more overlapping bounded privileges exist for a given principal, data can be downgraded in

more possible ways.

6o

4.5 CASE STUDIES

In this section, we explore the security guarantees provided by restricted privileges through a case

study program we developed.

4.5.1 CALENDAR CASE STUDY

We have extended LIO [77] with support for bounded privileges and robust privileges, and used
them to develop a Calendar application to explore and illustrate the utility of restricted privileges.
The application allows users to view their appointments, and schedule appointments with each
other. DC label principals are the calendar users. A user’s appointments are confidential to that user.

We consider a setting where principals belong to groups and a principal is willing to disclose her
availability to all and only members of her groups. For example, if Bob wants to schedule an ap-
pointment with Alice at time 7, the application will check Alice’s calendar and inform Bob whether
Alice is available at that time. This operation, which declassifies Alice’s availability at time # to Bob,
should succeed only if Alice and Bob are in the same group.

Each user A has a robust declassification privilege 7652 {A¥}, and, for each group G that A be-
longs to, a bounded endorsement privilege ©[A] EICC 7’f1>>, where G is the disjunction of all users in the
group. These are the only privileges available in the system for user A, and thus all endorsements
must be bounded appropriately, and all declassifications must be robust.

Joint scheduling between A and B works as follows:

1. User B sends a scheduling request for time #labeled (B, B) to user A.

2. User A computes her availability for time z. Because the context that computes the availability
reads data labeled (A, A) and (B, A), the label of the availability resultis (A A B, A V B).

3. If Aand B are both in some group G, then A uses her bounded privilege to endorse the avail-
ability result to (A A B, A), since she is prepared to take sole responsibility for the availability
result. Since both A and B are in the same group, the endorsement satisfies the bounds (i.e.,
A v B C' G). If there is no group for which both A and B are members, then A has no
bounded endorsement privilege for which the bounds will be satisfied.

4. User A uses her robust privilege to declassify the availability result to (B, A). The declassifica-

tion is robust.

5. User A sends the declassified value to B.

Because all downgrading in the system relevant to user A must use A’s restricted privileges, we
obtain strong system-wide guarantees, even if A’s restricted privileges manage to escape from the

scheduling component, and even if if B sends malicious scheduling requests. Section 4.4 (Figure 4.5)

61

discusses in more detail the system-wide guarantees that hold when both a bounded endorsement

privilege and a robust declassification privilege are available.

4.5.2 RESTRICTED PRIVILEGES IN EXISTING APPLICATIONS

Using our restricted privileges, we found a security vulnerability in an application written using
Haskell Automatic Information Labeling System (Hails) [30]. Hails is a web framework built on
LIO that extends the traditional Model-View-Controller paradigm to Model-Policy-View-Controller.
The policy module specifies all models and describes the labels for data fetched from the database.
When data is stored in the database, Hails checks labels against the policy module to ensure appro-
priate data integrity. The policy module has access to a privilege that can declassify all models. Asa
design pattern, policy modules export functions that perform declassification for untrusted applica-
tions using the privilege; untrusted applications never have direct access to the privilege.

Rock-Paper-Scissors is a Hails application that contains a security vulnerability due to misuse of
the policy privilege, despite being written by security experts who developed Hails.

The policy module includes a function to get the outcome of a match given a particular move by
a player. This function can be exploited to reveal the opponent’s move before the player has actually
committed to a move by submitting it to the database. As a result, a player can always win a match
by exploiting this function to determine which move will win, and then committing to that win-
ning move. When we replaced the policy module’s raw privilege with a robust privilege, the robust
declassification check signalled a potential security vulnerability. To fix the vulnerability, we added
code that checks whether a player had committed to a move (i.e., the move is in the database), and,
if so, endorses the submitted move. This endorsement allows the robust declassification check to

succeed. Endorsing only when the player has committed to his move fixes the security vulnerability.

4.6 RELATED WoORK

Declassification can be characterized into different dimensions: who, what, where, and when [70].
Our work can be considering as restricting where in the security lattice downgrading may occur
(bounded downgrading) and who may influence downgrading (robustness). Almeida Matos and
Boudol [2] introduce a construct flow p < g in ¢ to indicate where additional information flows
are allowed within a lexical scope. Intransitive noninterference [s0, 66, 80] posits a non-transitive in-
formation flow ordering which describes whar downgrading operations are permitted. Mantel and

Sands [50] combine intransitive noninterference with language techniques that use declassification

'https://github.com/scslab/hails/tree/master/examples/hails-rock

62

https://github.com/scslab/hails/tree/master/examples/hails-rock

annotations to explicitly identify non-transitive information flows. In our bounded declassification
mechanism, violation of the normal ordering of security levels is tied to a runtime value, and not
lexically scoped or marked by annotations.

In Jif [57], declassifications may explicitly state where in the security lattice the declassification
occurs. By contrast, our bounded mechanisms declare this restriction on the run-time value that
authorizes downgrading. Jif uses a form of access control to restrict which code may downgrade in-
formation, coined selective declassification by Pottier and Conchon [65]. Specifically, a downgrading
operation that may compromise the security of principal p may only occur in code that has been
(statically or dynamically) authorized by p. Similarly, the authority to declassify or endorse informa-
tion in Asbestos [25], HiStar [90], Flume [41], and COWL [79] must come from the creator of the
exercised privileges. By contrast, LIO associates the authority to declassify or endorse a principal’s in-
formation with a run-time value. This capability-like approach to authorizing downgrading enables
our local declarative approach to restrict downgrading. Birgisson et al. [12] use capabilities to restrict
the ability to read and write memory locations, but do not consider the use of capabilities to restrict
downgrading.

Zdancewic and Myers [88] introduce the semantic security condition of robust declassification,
and Myers et al. [60] enforce robust declassification with a security type system [69, 82], and intro-
duce gualified robustness, which extends the concept to reason about endorsement. Askarov and My-
ers [5] subsequently present a semantic framework for downgrading, and present a crisper version
of qualified robustness. Chong and Myers [18] extend the notion of robust declassification to the
Decentralized Label Model [58, 59]. The run-time checks used in this work to enforce robustness are
analogous to the run-time checks Chong and Myers introduce for the DLM. In other work, Chong
and Myers [17] note that the semantic security condition for robust declassification applies to infor-
mation flow of confidential information generally, including, for example, information erasure, and
is more general than just declassification. If the only privilege for p available in the system is a robust
privilege with mode mode d then the system will be robust for p. If the privilege for that mode is de
(i.e., robust declassification operations and robust endorsement operations are possible), then the
end-to-end security guarantee is gualified robustness [s5, 60]. A system satisfies qualified robustness
if the only way an attacker can influence what information is released to it is via robust endorsement
operations.

Foley et al. incorporate bounds constraints on a system with relabeling operations on objects [27].
Our model performs relabeling based on the use of capability-like tokens rather than with respect to
a particular subject. Bound restrictions can be placed per privilege rather than on all relabeling opera-

tions, so the guarantees of this work are more dependent on what sorts of privileges are available for

63

use, but do not require changes to the trusted computing base.

The system HiStar [90] provides the notion of gates: entities designed to encapsulate privileges
so that processes can safely switch their current label by exercising them through the gate. Gates
have a clearance component which imposes an upper bound on the label that results from using it.
Gates can be leveraged to restrict the use of privileges similar to upper bounds in bounded privileges.
Similar to our approach, Flume[41] distinguishes privileges used for declassification (symbol —) and

endorsement (symbol +).

4.7 CONCLUSION

Restricted privileges are a new mechanism to control declassification and endorsement in DC labels
that is simple and intuitive yet expresses a rich set of desirable policies. Bounded privileges impose
upper and lower bounds on data that is declassified or endorsed. Robust privileges help prevent the
accidental or malicious exercise of privileges to downgrade more information than intended, and
can provide the end-to-end security guarantees of robustness and qualified robustness. We provide
sound and complete efficient security checks for downgrading using restricted privileges. We note
that robust downgrading operations can be viewed as privileged downgrading with a weakened priv-
ilege. We explore the guarantees provided by combining the use of bounded and robust privileges

as well as their composition in a case study. This work establishes a basis for better design of IFC

systems that use privileges for downgrading information.

Cryptographically Secure Information-Flow Control
for Key-Value Stores

5.1 INTRODUCTION

Cryptography is critical for applications that securely store and transmit data. It enables the authen-
tication of remote hosts, authorization of privileged operations, and the preservation of confiden-
tiality and integrity of data. However, applying cryptography is a subtle task, often involving setting
up configuration options and low-level details that users must get right; even small mistakes can lead
to major vulnerabilities [ss, 71]. A common approach to address this problem is to raise the level
of abstraction. For example, many libraries provide high-level interfaces for establishing TLS [22]
network connections (e.g., OpenSSL') that are very similar to the interfaces for establishing unen-
crypted connections. These libraries are useful (and popular) because they abstract many configura-
tion details, but they also make several assumptions about certificate authorities, valid protocols, and
client authentication. Due in part to these assumptions, the interfaces are designed for experienced
cryptography programmers and as a result can be used incorrectly by non-experts in spite of their
high level of abstraction [8s]. Indeed, crypto library misuse is a more prevelant security issue than
Cross-Site Scripting (XSS) and SQL Injection [1].

Information flow control (IFC) is an attractive approach to building secure applications because

it addresses some of these issues. There has been extensive work in developing expressive informa-

'https://www.openssl.org/

https://www.openssl.org/

tion flow policy languages [4, 59, 76] that help clarify a programmer’s intent. Furthermore, many
semantic guarantees offered by IFC languages are inherently compositional from a security point

of view [31, 88]. However, existing IFC languages (e.g., [21, 35, 57, 68, 77, 79, 87]) generally assume
that critical components of the system, such as persistent storage, are trustworthy—the components
must enforce the policies specified by the language abstraction. This assumption makes most cur-
rent IFC systems a poor fit for many of the use-cases that cryptographic mechanisms are designed
for.

To remedy this issue, it is tempting to extend IFC guarantees to work with untrustworthy data
storage by simply “plugging in” cryptography. However, the task is not simple: the threat model
of an IFC system extended with cryptography differs from both the standard cryptographic threat
models and from standard IFC threat models. Unlike most IFC security models, an attacker in this
scenario may have low-level abilities to access signatures and ciphertexts of sensitive data, and the
ability to deny access to data by corrupting it (e.g., flipping bits in ciphertexts).

Attackers also have indirect access to the private cryptographic keys through the trusted runtime.
An attacker may craft and run programs that have access to the system’s cryptographic keys in order
to trick the system into inappropriately decrypting or signing information. Cryptographic security
models often account for the high-level actions of attackers using oracles that mediate what informa-
tion an active attacker can learn through interactions with the cryptosystem. These oracles abstractly
represent implementation artifacts that could be used by the attacker to distinguish ciphertexts. En-
suring that an actual implementation constrains its behavior to that modeled by an oracle is typically
left to developers.

An attacker’s actual interactions with a system often extends beyond the semantics of specific
cryptographic primitives and into application-specific runtime behavior such as how a server re-
sponds when a message fails to decrypt or a signature cannot be verified. If an attacker can distin-
guish this behavior, it may provide them with information about secrets. Building real implemen-
tations that provide no additional information to attackers beyond that permitted by the security
model can be very challenging.

Therefore, to give developers better tools for building secure applications, we need to ensure that
the system security is not violated by combining attackers’ low-level abilities and their ability to craft
their own programs. This requires extending the attacker’s power beyond that typically considered
by IFC models, and representing the attacker’s interactions with the system more precisely than typi-
cal cryptographic security models.

This chapter presents Clio, a programming language that reconciles IFC and cryptography mod-

els to provide guarantees on both ephemeral data within Clio applications and persistent data on

66

an untrusted key-value store. Clio extends the IFC-tool LIO [77] with store and fetch operations for
interacting with a persistent key-value store. Like LIO, Clio expresses confidentiality and integrity
requirements using secxrity labels: flows of information are controlled throughout the execution of
programs to ensure the policies represented by the labels are enforced. Clio encrypts and signs data
as it leaves the Clio runtime, and decrypts and verifies as it enters the system. These operations are
done automatically according to the security labels—thus avoiding both the mishandling of sensi-
tive data and the misuse of cryptographic mechanisms.

Clio transparently maps security labels to cryptographic keys and leverages the underlying IFC
mechanisms to ensure that keys are not misused within the program. Since we consider attackers
capable of denying access to information by corrupting data, Clio extends LIO labels with an avail-
ability policy that tracks who can deny access to information (i.e., who may corrupt the data).

Figure 5.1 presents an overview of the Clio threat model. At a high-level, a Clio program may be a
malicious program written by the attacker. Attackers may also perform low-level fetch and store
operations directly on the key-value store. In addition, all interactions between the runtime and the
store are visible to the attacker. Only the (trusted) Clio runtime has access to the keys used to protect
information from the attacker, but the attacker may have access to other “low” keys. The Clio run-
time never exposes keys directly to program code: they are only used implicitly to protect or verify
data as it leaves or enters the Clio runtime. Therefore, Clio’s information flow control mechanisms
mediate the attacker’s ability to discover new information or modify signed values by interacting
with a Clio program through fetchs and stores to a Clio store.

This chapter makes the following contributions:

* A formalization of the ideal semantics of Clio, which models its security without cryptogra-

phy, and a real semantics, which enforces security cryptographically.

* A novel proof technique that combines standard programming language and cryptographic
proof techniques. Using this approach, we have characterized the interaction between the
high-level security guarantees provided by information flow control and the low-level guaran-
tees offered by the cryptographic mechanisms. For confidentiality, we have formalized these
guarantees as chosen-term attack security, an extension of chosen-plaintext attack security to
systems where an attacker may choose arbitrary programs that encrypt and decrypt informa-
tion. Similarly, for integrity we have defined leveraged existential forgery, an extension of ex-
istential forgery to systems where an attacker may choose and execute a program to produce

signed values.

CLIO
runtime Store

‘ get/put

' operations
public keys, I

all private keys B

CLIO get/put
programs operations

public keys, .
low private keys @ ~

Attacker

Figure 5.1: Clio threat model. Attackers write Clio programs, read from and write to the store, and observe the runtime’s
interactions.

* A prototype Clio implementation in the form of a Haskell library extending LIO. Our pro-
totype system employs the DC labels model [76], previously used in practical systems (e.g.,
Hails [30] and COWL [79]). Our implementation extends DC labels with an availability

component, both of which may be applicable to these existing systems as well.

Although our results are specific to Clio, we expect our approach to be useful in proving the secu-
rity of cryptographic extensions of other information flow languages.

The rest of the chapter is structured as follows. Section 5.2 describes the extensions to it in or-
der to interact with an untrusted store. Section 5.3 describes the computational model of Clio with
cryptography, and Section 5.4 shows the model’s formal security properties. Section 5.5 describes the
prototype implementation of Clio along with a case study. And finally Section 5.6 discusses related

work.

5.2 INTERACTING WITH AN UNTRUSTED STORE

Clio extends LIO with a key-value store. The language is extended with two new commands:

store 7 1, puts a labeled value 7, in the store with key ; fetch ; #, 7, command fetches the entry with

key #, and if it cannot be fetched, returns the labeled value 7,. In both commands, #, must evaluate

to a ground value and the labeled value 7, must evaluate to a labeled ground value with type 7.
Semantics for fetch and store are shown in Figure 5.2. We modify the semantics to be a labeled

I . « . . .
transition system, where the step relation — is annotated with store events cv. A store event o is:

68

STORE
leur T Cstore leur T 4 o = put<p:f>at (42

(leurs Leir | store vy <v:h>) N (leurs ki | return ())
FETCcH-VALID

A(‘&mre) EA A(ld)

o = got, <v:l> aty, IC I

(leur, bar | fetch - vy, <vy:10>) N (beur, L1z | return <v:ly>)

FETCH-INVALID
A(&mre) EA A(ld)
(v = nothing-at v,) or (v = got, <v:[> aty,and [Z I;)

(0%
(Leur, Lr | fetch - vy, <vg:lp>) — (leur, lar | return <u;:lg>)
Figure 5.2: Clio language semantics (store and fetch rules).

* skip (representing no interaction with the store, i.e., an internal step; we typically elide skip for

clarity),
* put <v: > at v, (representing putting a labeled ground value <»: /> indexed by v;),
* got . <v:l> at v, (representing reading a labeled value from the store indexed by v,,), or
* nothing-at v, representing an attempt to read at index v, for which there is no value.

Labeling transitions with store events allows us to cleanly factor out the implementation of the
store, enabling us to easily use either an idealized (non-cryptographic) store, or a store that uses cryp-
tography to help enforce security guarantees. We describe the semantics of store events in both these
settings later.

We associate a label £,y with the store. Intuitively, store level £y, describes how trusted the
store is: it represents the inherent protections provided by the store and the trust the store places
on Clio that a Clio computation must respect. For example, the store may be behind an organiza-
tion’s firewall so data is accessible only to organization members due to an external access control
mechanism (i.e., the firewall), so Clio can safely store the organization’s information there. Dually,
there may be integrity requirements that Clio is trusted to uphold when writing to the store. For
example, the store may be used as part of a larger system that uses the store to perform important
operations (e.g., ship customer orders). Thus the integrity component of the store label is a bound
on the trustworthiness of information that Clio should write to the store (e.g., Clio should not put

unendorsed shipping requests in the store). The availability component of the store label specifies

69

abound on who is able to corrupt information in the store (and thus make it unavailable). (Note
that we are concerned with information availability rather than system availability.) In general, this
would describe all the principals who have direct and indirect write-access to the store.

Rule SToRE (Figure 5.2) is used to put a labeled value <v : /> in the store, indexed by key v,. We
require that the current label /, is bounded above by store level £5,. In terms of confidentiality,
this means that any information that may be revealed by performing the store operation (i.e., lcur)
is permitted to be learned by users of the store. For integrity, the decision to place this value in the
store (possibly overwriting a previous value) should not be influenced by information below the
integrity requirements of the store. For availability, the information should not have come from
less available sources than the store’s availability level to ensure the store’s availability level accurately
reflects who could have corrupted stored information.

Additionally, we require the current label to flow to £, the label of the value that is being stored
(i.e., Lur T L). Intuitively, this is because an entity that learns the labeled value also learns that the
labeled value was put in the store. Current label /o, is an upper bound on the information that lead
to the decision to perform the store, and /; bounds who may learn the labeled value.

For a command fetch ; v, <v,: >, the labeled value <y, : [z> serves double duty. First, if the store
cannot return a suitable value (e.g., because there is no value indexed by key v,, or because crypto-
graphic signature verification fails), then the fetch command evaluates to the default labeled value
<vy : lg> (which might be an error value or a suitable default). Second, label /; specifies an upper
bound on the label of any value that may be returned by the fetch command: if the store wants to
return a labeled value <v: /> where [IZ Iz, then the fetch command evaluates to <y, : [z>. This allows
a programmer to specify a bound on information they are willing to read from the store.

Rule FETCH-VALID is used when a labeled value is successfully fetched from the store. Store event
got, <v: /> at v, indicates that the store was able to return labeled value < : /> indexed by the key v,.
Rule FETCH-INVALID is used when a labeled value cannot be found indexed at the index requested
or it does not safely flow to the default labeled value (i.e., it is too secret, too untrustworthy or not
available enough), and causes the fetch to evaluate to the specified default labeled value. Since the
label of the default value /; will be used for the label of the fetched value in general, the availability
of the store level should be bounded above by the availabiltiy of the label of the default value (i.c.,
A(lsore) T4 A(l)) in both rules, as the label of the fetched value should reflect the fact that anyone

from the store could have corrupted the value.

70

5.2.1 IDEAL STORE BEHAVIOR

In this section we informally desecribe the ideal behavior of an untrusted store from the perspective
of a Clio program.” The ideal store semantics provides a specification of the behavior that a real Clio
implementation should strive for, and allows the programmer to focus on functionality and security
properties of the store rather than the details of cryptographic enforcement of the labeled values. In
Section 5.3 we describe how we use cryptography to enforce these ideal security properties.

We use a small-step relation (¢, o) ~> (¢, 0’) where (c,0) and (¢, 0’) are pairs of a Clio con-
figuration ¢ and an ideal store 0. An ideal store o maps ground values v, to labeled ground values
<v: [>. If a store doesn’t contain a mapping for an index v, we represent that as mapping it to the
distinguished value L.

Store events emitted by the Clio configurations are used to communicate with the store. When
aput <v:/> at g, event is emitted, the store is updated appropriately. When the Clio computation
issues a fetch command, the store provides values appropriately (i.e., either requirement event
nothing-at v, or providing < : /> for event got » <v: /> at y,,). For Clio computation steps that don’t

interact with the store, store event skip is emitted, and the store is not updated.

5.2.2 NON-CLIO INTERACTION: THREAT MODEL

We assume that programs other than Clio computations may interact with the store and may try to
actively or passively subvert the security of Clio programs. Our threat model for these adversarial

programs is as follows (and uses store level £,y to characterize some of the adversaries’ abilities).

+ All indices of the key-value store are public information, and an adversary can probe any in-

dex of the store and thus notice any and all updates to the store.

* An adversary can read labeled values <v: ;> in the store where the confidentiality level of label

L is no more confidential than the store level £y (i€, C(4) £€ C(Lrore).

* An adversary can put labeled values <v: ;> in the store (with arbitrary ground value index v;,)

provided the integrity level of store level £,y is at least as trustworthy as the integrity of label

ZI (i-e-:]I(gstore) EI]I(ZI»

An adversary can adaptively interact with the store. That is, the behavior of the adversary may de-
pend upon changes the adversary detects or values in the store.

We make the following restrictions on adversaries.

'Complete formal definitions in Appendix C.1.6.

71

Low-STEP B
(¢, 1(a)) ~ (¢, ")
PC(C) L estore PC(C/) C gstore
(e, 0), 1) ~ (¢, 0)

Low-To-HicH-TO-LOW-STEP

<Cv i(0)> ~ <Co, Uo>
(€orT0) ~ oo~ (g, 0))
vo§i<j- PC(Ci) Z fstore PC(C]) C g:tare

(e, 0), 1) ~ (g, 0))

~|

n= I 1|1

I ::= skip= A\o.o

| put<v:l>atd = Ao. o[t/ = <v:h>] s.t. I(Lgere) TN 1(L)
| corruptyy,...v, = Ao.ofv, — L;...p, — L]

Figure 5.3: Adversary interactions and low steps

* The adversary does not have access to timing information. That is, it cannot observe the time
between updates to the store. We defer to orthorgonal techniques to mitigate the impact of

timing channels [8]. For example, Clio could generate store events on a fixed schedule.

* The adversary cannot observe termination of a Clio program, including abnormal termina-
tion due to a failed label check. This assumption can be satisfied by requiring that all Clio
programs do not diverge and are written defensively to avoid abnormal termination, e.g., by
using getLabel to check the label of a labeled value before unlabeling it. Program analysis can
ensure these conditions, and in the rest of the chapter we consider only Clio programs that

terminate normally.

We formally model the non-Clio interactions with the store using sequences of adversary interac-
tions I, given in Figure 5.3. Adversary interactions are skip, put <v: > at v/ and corrupt v,, ...v,, which,
respectively: do nothing; put a labeled value in the store; and delete the mappings for entries at in-
dices v, to v,,. For storing labeled values, we restrict the integrity of the labeled value stored by non-
Clio interactions to be at most as trustworthy as the integrity of the level of the store. Sequences of
interactions Z, - ... - I, are notated as /.

To model the adversary actively updating the store, we define a step semantics ™ that includes
the adversary interactions /. We restrict interactions to occur only at low steps, i.e., when the current

label of the Clio computation is less than or equal to the store level £y,y,. (By contrast, a bigh step is

72

when the current label can not flow to £5y..) Rules Low-STEP and Low-To-HiGH-To-Low-STEP

express adversary interactions occurring only at low steps.

5.3 REearizing Crio

In this section we describe how Clio uses cryptography to enforce the policies on the labeled values
through a formal model, called the real Clio store semantics. This model serves as the basis on which
to establish strong, formally proven, computational guarantees of the Clio system. We first describe
how DC labels are enforced with cryptographic mechanisms (Section s.3.1), and then describe the

real Clio store semantics (Section 5.3.2).

5.310 CRYPTOGRAPHIC DC LABELED VALUES

Clio, like many systems that use cryptography, identifies security principals with the public key of

a cryptographic key pair, and associates the authority to act as a given principal with possession of
the corresponding private key. At a high level, we will ensure that only those with access to a princi-
pal’s private key can access information confidential to that principal and vouch for information on
behalf of that principal.

Clio tracks key pairs in a keysrore. Formally, a keystore is a mapping P : p — ({o,1}*,{o,1}}),
where p is the principal’s well-known name, and the pair of bit strings contains the public and pri-
vate keys for the principal. In general, the private key for a principal may not be known—represented
by L —which corresponds to knowing the identity of a principal, but not possessing its authority.
Keystores are the basis of authority and identity for Clio computations. We use meta-functions on
keystores to describe the authority of a keystore in terms of DC labels." Conceptually, a keystore
can access and vouch for any information for a principal for which it has the principal’s private key.
Meta-function authorityOf (P) returns a label where each component (confidentiality, integrity,
and availability) is the conjunction of all principals for which the keystore P has the private key. We
also use the keystore is to determine the starting label of a Clio program (Start(P), which is the
most public, trusted, and available label possible given the keystore’s authority), and the least restric-
tive clearance for a Clio computation (Clr(P), which is the most confidential (the conjunction of
principals in the keystore), least trustworthy (the disjunction of principals in the keystore), and least
available (the disjunction of principals in the keystore) data that the computation can compute on

given the keystore’s authority).

"Complete definitions for these functions are in Appendix C.r.8.

73

Using the principal keystore as a basis for authority and identity for principals, Clio derives a cryp-
tographic protocol that enforces the security policies of safe information flows defined by DC labels.
In the DC label model, labels are made up of triples of formulas. Formulas are conjunctions of

categories C; N\ ... \ C,. Categories are disjunctions of principals p; \VV ... VV p,. Any principal in a
category it is a member of can read (for confidentiality) and vouch for (for integrity) information
bounded above by the level of the category. We enforce that ability cryptographically by ensuring
that only principals in the category have access to the private key for that category. Clio achieves this
through the use of caregory keys.

A category key ck serves as the cryptographic basis of authority and identity for a category. A cat-
egory public key is readable by all principals, while the category private key is only readable by mem-
bers of the category. Category keys are created lazily by Clio as needed and placed in the store. A
category key is created using a randomized meta-function’ parameterized by the keystore. The gener-
ated category private key is encrypted for each member of the category separately using each member
principal’s public key. To prevent illegitimate creation of category keys, a category key is signed using
the private key of one of the category members.> When a category key is created and placed in the
store, it can be fetched by anyone but decrypted only by the members of the category. When a Clio
computation fetches a category key, it verifies the signature of the category key to ensure that a cate-
gory member actually created it. (Failing to verify the signature would allow an adversary to trick a
Clio computation into using a category key that is accessible to non-category members.)

A Clio computation encrypts data confidential to a formula C; A ... A C, by chaining the en-
cryptions of the value. It first encrypts using C;s category public key and then encrypts the resulting
ciphertext for formula C, A ... A C,. This form of layered encryption relies on a canonical ordering
of categories; we use a lexicographic ordering of principals to ensure a canonical ordering of encryp-
tions and decryptions.

A Clio computation signs data for a formula by signing the data with each category’s private key
and then concatenating the signatures together. Verification succeeds only if every category signa-

ture can be verified.

Equipped with a mechanism to encrypt and sign data for DC labels that conceptually respects

safe information flows in Clio, we use this mechanism to serialize and deserialize labeled values to

"Defined formally in Appendix C.1.7.

*The Clio runtime ensures that the first time a category key for a given category is required, it will be because data
confidential to the category or vouched for by the category is being written to the store, and thus the computation
has access to at least one category member’s private key. Note that any computation with the authority of a category
member has the authority of the category.

74

the store. Give a labeled ground value <(/, ;, ;) : v>, the value vis signed according to formula

l;. The value and signature are encrypted according to formula /;, and the resulting bitstring is the
serialization of the labeled value. Deserialization performs decryption and then verification. If de-
serialization fails, then Clio treats it like a missing entry, and the fetch command that triggered the

deserialization would evaluate to the default labeled value.

RErLAY ATTACKS Unfortunately, using just encryption and signatures does not faithfully im-
plement the ideal store semantics: the adversary is able to swap entries in the store, or re-use a pre-
vious valid serialization, and thus in a limited way modify high-integrity labeled values in the store.
We prevent these attacks by requiring that the encryption of the ground value and signature also
includes the index value (i.e., the key used to store the labeled value) and a version number. The
real Clio semantics keeps track of the last seen version of a labeled value for each index of the store.
When a value is serialized, the version of that index is incremented before being put in the store.
When the value is deserialized the version is checked to ensure that the version is not before a pre-
viously used version for that index. In practice, this version counter could be implemented as a vec-
tor clock between Clio computations to account for concurrent access to the store. However, for

simplicity, we model the version as a natural number in the real Clio store semantics.

5.3.2 CLIO STORE SEMANTICS

In this section we describe the real Clio store semantics in terms of a small-step probabilistic rela-
tion ~~. The relation models a step taken from a real Clio configuration to a real Clio configuration
with probability p. A real Clio configuration is a triple (¢, R, V') of a Clio configuration ¢, a distri-
bution of sequences of real interactions R, and a version map V. Note that the interactions includes
both adversary interactions and interactions made by Clio. The version map tracks version numbers
for the store to prevent replay attacks, as described above. For technical reasons, instead of the con-
figuration representing the key-value store as a map, we use the history of store interactions (which
includes interactions made both by the Clio computation and the adversary). The sequence of in-
teractions applied to the initial store gives the current store. Because the real Clio store semantics are
probabilistic (due to the use of a probabilistic cryptosystem and cryptographic-style probabilistic
polynomial-time adversaries), configurations contain distributions over sequences of store interac-
tions.

Real interactions R (and their sequences R) are defined in Figure 5.4 and are similar to adversary

interactions with the ideal store. However, instead of labeled values containing ground values, they

75

Low-STEP - o B
R ={ Ry - RIRy+ Ry; R« R |}
<C7]R/a V> WP <C/7]R”7 V/>
PC(c) E C(Lstore) PC(c") E C(lstore)
(¢, R, V),Ry) ~, (¢,R", V')

Low-to-HiGH-TO-LOW-STEP B o o
R ={ R, - RIR;+Ry; R« R |}
<67]R/a V> M-)po <CO7]R07 V)>
<co,]Ro,Vo> M py e M <cj,]R]-,V]->
vo§i<j- PC(Q) Z E:tore PC(C]) C Zsmre pP= Hogigjpi
(<C7 R, V>7]RA) f\p <Cj7]R], V]>
Interactions: R::= skip = \o. o
| putckat C= Ao.o[C > ck]
| put<s:l>aty, = Ao. o[y, — <s:b]
Strategies: S : R—R

stepl, (e S.1) = { (R Vihipo p) | ({cos {(skip.)}, Zo). S({(skip,1)}) v, (6, R V) }
stepf (507‘Svj+1): {(<5271R2,V2>,Po']71)‘ (<Q,]RI,VI>,P0) Gstepf (CO,S,j);

store store

(6 Ry V1), S(R)) Ay, (6 R, V)

Figure 5.4: Real Clio low step semantics

contain bitstrings & (expressing the low-level details of the cryptosystem and the ability of the adver-
sary to perform bit-level operations).

To express probability distributions, we use notation
{AX:, ... Xu) | X; < Dy; ... X, < D, |}

to describe the distribution over the function fwith inputs of random variables X, ..., X, where X;
is distributed according to distribution D; for1 < i < n.

Figure 5.5 presents the inference rules for ~~,. Internal steps do not affect the interactions or ver-
sions. For storing (rule STORE), the version of the entry is incremented using the increment func-
tion and the real Clio configuration uses a new distribution of interactions R’ containing the in-
teractions to store the labeled value. The new distribution contains the original interactions (dis-
tributed according to the original distribution of interactions) along with a concatenation of labeled
ciphertexts and any new category keys (distributed according to the distribution given by serializa-

tion function). The configuration steps with probability 1 as the STORE rule will be used for all store

76

operations.

When fetching a labeled value, there are three possible rules that can be used depending on the
current state of the store. The premise, (7,p) € {| R(0) | R +— R [} means that store o has probabil-
ity p of being produced (by drawing interaction sequence R from distribution R and applying R to
the empty store () to give store o).

Which rule is used for a fetch operation depends on the state of the store, and so the transitions
may have probability mass less than one. Rule FETCH-EX1STS is used when the sequence of interac-
tions drawn produces a store that has a serialized labeled value indexed by v}, that can be correctly de-
serialized and whose version is not less than the last version seen at this index. Rule FETCH-MissING
is used when the sequence of interactions drawn produces a store that either does not have an entry
indexed by v, or has an entry that cannot be correctly deserialized. Finally, FETcH-REPLAY rule is
used when the sequences of interactions drawn produce a store where an adversary has attempted
to replay an old value. More precisely, the store has a labeled value that can be deserialized correctly,
but whose recorded index is not the same as the index requested by the Clio computation or whose
version is less than the version last seen by the Clio computation.

Similar to the ideal store semantics, we also use a low step relation M, to model adversary inter-
actions, shown in Figure s.4. The low step relation is also probabilistic as it is based on the proba-
bilistic single step relation ~,. Additionally, we use a distribution of sequences of adversarial inter-
actions R 4 to model an adversary that behaves probabilistically. In rules Low-STEP and Low-To-
Higu-To-Low-STEP a new distribution of interactions, R’ is created by concatenating interaction
sequences drawn from the existing distribution of interactions R and the adversary distribution R 4.
This is analogous to the application of adversary interactions to the current store in the ideal seman-
tics. The rest of the definitions of the rules follow the same pattern as the ideal Clio low step store
semantics.

With the low step relation, we use metafunction step to describe the distributions of real Clio
configurations resulting from taking j low steps from configuration ¢,, formally defined in Fig-
ure 5.4. The step function is parameterized by the keystore P and store level £sye. To provide a
source of adversary interactions while running the program, the step function also takes as input a
strategy S which is a function from distributions of interactions to distributions of interactions, rep-
resenting the probabilities of interactions an active adversary would perform. Before each low step,
the strategy is invoked to produce a distribution of interactions that will affect the store that the Clio
computation is using. That is, strategy models the probabilistic behavior of the interactions made by

the adversary.

77

INTERNAL-STEP
c— ¢

(e, R, V) ~ (/,R, V)

STORE
put <v:l> at v, ,
c— ¢

n = increment(V (y,)) V' =V]y, — 7]
R = {| put <s:h>atp, - R - R | R+ R;
(R, <s:h>) < serializep (o, <(v, v, n) : [i>) [}
(e, R, V)~ (R, V')

FETCcH-EXISTS
got . w:lp aty, ’

(c—— . ¢ n & V(y)
(0.p) €l RO)|R<R [} p>o

<(v, v, n) : > = deserializep(o,0(v,), T)
(6, R, V) ~5 (¢, R, V)

FETCH-MISSING
nothing-at v, ’
c c

(0.p) E{{ RO)|R<R [} p>o
deserializep (o, 0(v,),) undefined
(6, R, V) ~5 (¢, R, V)

FETCH-REPLAY
nothing-at v, /

c—— ¢ gz#gkorn<V(gk)
(o.p) € RO)IR<R [} p>o

(v, ¥y, n):b> = deserializep(a, (1), T)
(¢, R, V) ~p (¢, R, V)

Figure 5.5: Real Clio semantics

5.4 FORMAL PROPERTIES

In this section, we describe two formal properties of the real Clio store semantics.” We first show that
if the cryptosystem is secure under chosen-plaintext attacks, then Clio is secure under chosen-term
attacks (Section 5.4.1). A chosen-term attack is similar to a chosen-plaintext attack but more general
as the adversary can choose a term (i.e., a program) to run rather than just a plaintext to encrypt. We
then show that if the cryptosystem is secure against existential forgery under chosen-message attacks

then Clio is secure against leveraged forgery (Section s.4.2). Leveraged forgery is similar to existential

"Complete defintions and proofs are in Appendices C.rand C.2.

78

forgery under chosen-message attacks, however it is similarly more general as the adversary can also

provide a term to run to potentially produce a message with a valid signature.

5.4.1 INDISTINGUISHABILITY

A cryptosystem is semantically secure if, informally, the ciphertexts of messages of equal lengths are
computationally indistinguishable from one another. Two sequences of probability distributions are
computationally indistinguishable (written {X,,}, &~ {¥}},) if for all non-uniform probabilistic

polynomial time (ppt) algorithms A,
‘Pr[.A(x) =1|x < X,] —Pr[A(y) = 1|y« T,] ‘

is negligible in n [33].
In modern cryptosystems, semantic security is defined as indistinguishability under chosen-plaintext

attacks (CPA), defined below [64].

Definition 10 (Indistinguishability under Chosen-Plaintext Attack). Let rhe random
variable INDy (A, n) denote the output of the experiment, where A is non-uniform ppt, n € N,
be{o,1}:
INDy (A, n) = (pk, sk) < Gen(1");
Mo, my, A, <— A(pk) s.t. |mo| = |myl;
¢ < Enc(pk, mp);
Output A, (c)

IT = (Gen, Enc, Dec) is Chosen-Plaintext Attack (CPA) secure if for all non-uniform ppr A:

{INDO(A,) }n ~ { IND; (A, 7) }

n

This definition of indistinguishability phrases the security of the cryptosystem in terms of a game.
In this game, an adversary receives the public key and then produces two plaintext messages of equal
length. The game then chooses one of the two messages to encrypt and passes the resulting cipher-
text back to the adversary. The cryptosystem is CPA Secure if no adversary exists that can produce
substantially different distributions of output based on the choice of message. In other words, no
computationally-bounded adversary is able to effectively distinguish which message was encrypted.

Clio relies on a semantically secure cryptosystem. However, this is not enough to show that Clio
protects the confidentiality of secret information. This is because CPA Security provides guarantees

only for individually chosen plaintext messages. In contrast, in our setting we consider zerms (i.c.,

79

programs) chosen by an adversary. There are also many principals and as a result many keys in a real
system, so Clio must protect arbitrarily many principals’ information from the adversary. Addition-
ally, the adversary may already have access to some of the keys. Finally, the adversary is active: it can
see interactions with the store and issue new interactions adaptively while the program is running. It
may be the case that an adversary can leverage a Clio computation to illegitimately produce a value it
should not have. It may, through the course of interacting with the store, trick the Clio system into
leaking secret information, especially when considering that the program itself may be untrusted.
With these considerations in mind, we define indistinguishability under a new form of attack:

chosen-term attacks (CTA).

Definition 11 (Indistinguishability under Chosen-Term Attack). Ler the random vari-
able INDy (P, A, p, j, n) denote the output of the following experiment, where 11 = (Gen, Enc, Dec,
Sign, Verify), A is non-uniform ppt, n € N, b € {o,1}:

IND(Ps, A, p,j, n) =

P’ < Gen(p,1"); P =P, W P';

1, Vo, 01, Sy Ay <= A(pub(P)) such that v, =j
and & t: Labeled T — LIO T’
and + v, : Labeled T
and b v, : Labeled T
and lyore = authorityOf (P,);

(e, Ry, V') stepzm((Start(P), Cir(P) | (£vs)), S, J);

Ry < Ry; Output A, (Rp)

Uy

Clio using 11 is CTA Secure if for all non-uniform ppt A, j € N, keystores P, and principals p:

{ IND,(P, A, 5,], n) } ~ { INDy(P, A, p,j, n) }

n n

This version of the game follows the same structure as the CPA game. In addition, though, we
allow the adversary to know certain information (by fixing it in the game), including some part of
the keystore (P,), the set of principals that Clio is protecting (p), and the number of low steps the
program takes (7).

In this game setup, Gen(p, 1) generates a new keystore P’ containing private keys for each of the
principals in p, using the underlying cryptosystem’s Gen function for each keypair. Then, the adver-

sary receives all the public keys of the keystore pub(P) and now, instead of returning two plaintext

8o

mesasges (in CPA), it instead returns three well-typed Clio terms: a function 7, and two program
inputs to the function v, and v; that must be confidentiality-only low equivalent :ZCSW (i.e., they
may differ only on secret values). It also returns a strategy S that it can use to interact with the store
while it is running. In practice the strategy would not be explicitly used, but instead in this formal
game S is a a non-uniform probabilistic polynomial-time function (as it comes from the A function
which is also polynomial-time) that captures all of the possible adversary interactions and the prob-
abilities with which it would make those interactions. The program ¢, is run with one of the inputs
v, or vy for j steps. The adversary receives the interactions resulting from a run of the program and
needs to use that information to determine which secret input the program was run with.

Being secure under a chosen-term attack means that the sequences of interactions between two
low-equivalent programs are indistinguishable and hence an adversary does not learn any secret in-
formation from the store despite actively interacting with it while the program it chose is running.
Note that the adversary receives the full trace of interactions on the store (including its own inter-
actions); this gives it enough information to reconstruct the final state of the store and any interme-
diate state. For any set of principals, and any adversary store level, the interactions with the store
contain no efficiently extractable secret information for all well-typed terminating programs.

We can show that Clio satisfies this security guarantee.
Theorem 12 (CTA Security). If1I if CPA Secure, then Clio using 11 is CLA Secure.

We prove this theorem in part by induction over the low step relation M, to show that two low
equivalent configurations will produce low equivalent configurations, including computationally
indistinguishable distributions over sequences of interactions. A subtlety is that we must strengthen
the inductive hypothesis to show that sequences of interactions satisfy a stronger syntactic relation
(rather than being just computationally indistinguishable).

More concretely, the proof follows three high-level steps. First, we show how a relation =< on fam-
ilies of distributions of sequences of interactions preserves computational indistinguishability. That
is, if R, < R, and ITis CPA secure, then R, ~ R,. Second, we show that as two low equivalent
configurations step using the low step relation ~,, low equivalence is preserved and the interactions
they produce satisfy the relation <. Third, we show that the use of the step metafunction on two
low equivalent configurations will produce computationally indistinguishable distributions over
distributions of sequences of interactions. Each step of the proof relies on the previous step and the
first step relies on the underlying assumptions on the cryptosystem. We now describe each step of

the proof in more detail.

"Complete definition of low equivalence is in Appendix C.r.s.

81

STEP 1: INTERACTIONS RELATION We consider pairs of arbitrary distributions of sequences of
interactions and show that, if they are both of a certain syntactic form then they are indistinguish-
able. Importantly, the indistinguishability lemmas do not refer to the Clio store semantics, i.e., they
merely describe the form of arbitrary interactions that may or may not have come from Clio. The
invariants on pairs of indistinguishable distributions of interactions implicitly require low equiva-
lence of the programs that generated them, and low equivalence circularly requires indistinguishable
distributions of interactions. As a result, we describe the lemmas free from the Clio store semantics
to break the circularity.

We progressively define the relation < on a pair of interactions. Initially, distributions of inter-
actions only contain secret encryptions so that we can appeal to a standard cryptographic argu-
ment of multi-message security. Formally, for all keystores Po, and £, ..., l, such that C(4;) C¢
C(authorityOf(P)), and for all My, oy, y and all principals p, if |mi| = |mi| forallt < i < &
and IT is CPA Secure, then

{ put < :[>at of - ... - put <bF: > at of ‘
P + Gen(1"); (pki,,rki) € rng(P); b Enc(pki7 m);1<i<k }n

~

{ put < :F>atof - ... - put <bF: > at o |
P <+ Gen(1"); (pk',sk') € rng(P); b < Enc(pki,mi); 1 < i<k }n

Using multi-message security as a basis for indistinguishability, we then expand the relation to
contain readable encryptions (i.e., ones for which the adversary has the private key to decrypt) where
the values encrypted are the same. In the complete definiton of <, we expand it to also contain inter-
actions from a strategy, forming the final relationship on interactions captured by the < relation.

We establish an invariant that must hold between pairs in the relation in order for them to be
indistinguishable. For example, in the first definition, the lengths of each corresponding message
between the pair must be the same. Each intermediate definition of < is used to show that a ppt can
simulate the extra information in the more generalized definition (thus providing no distinguishing
power). For the first definition of the relation containing only secret encryptions, a hybrid argument

is used similar to showing multi-message CPA security [64].

STEP 2: PRESERVATION OF Low EQUIVALENCE ~ We show that as two low equivalent programs

tand 7 progress, they simultaneously preserve low equivalence # =§ 7 and the distributions of
store
sequences of interactions they produce R and R’ are in the relation <.
. « « .
We first show thatif ¢, — ¢, andg — ¢ andc, :Zm athend, =§ . Thisproof

_esrare

takes advantage of the low equivalence preservation proofs for LIO in all cases except for the storing

82

- C RN

(<CI, skip, V), S(skip))ﬁzﬂm ((cz, skip, Vo), (skip))
Y N\d NS
¥ X ¥ X
<d/7]R;7V;> <C:>]R!vvl> <C;/31R;7V;> <f;,]R2’V2>
AN _c ‘. _cC .
S T e T
stepp(a, S, 1) stepp (e, S, 1)

Figure 5.6: Low equivalence is preserved in step for two low equivalent configurations ¢; and ¢, and a strategy S.

and fetching rules. For store events, since all values being stored will have the same type (due to type
soundness), and will be ground values, serialized values will have the same message lengths.

We then show that if ((co, Ro, Vo), R) ny (¢, R, V') and

(e Ry, Vi), R) ™y (¢, R}, Vi) and ¢ =f gand Vo = Viand R, X R thend, =f ¢

and V, = V/and R, < R!. The proof on ~, relies on the previous preservation proof on <

and the indistinguishability results on <.

STEP 3: INDISTINGUISHABILITY OF THE STEP METAFUNCTION We show that the step meta-

function preserves low equivalence. More formally, we show that if ¢, :ZW gand Vo, = V,and
R, < R, then

{(le,po e p) | {60, Ro, Vi) MNpy oo (MY <Cf>,]Rf>7Vf>>}n

~
~

{(]RLP:) T Pl) ‘ <CIaIRI7VI> MNpleee (TN <C:aIR£7V;>}n

We prove this by showing that the probabilities of traces taken by two low equivalent configurations
are equal with all but negligible probability. As an example, Figure 5.6 shows graphically how one
step of the trace is handled. We examine the result of stepp (¢, S, 1) and stepp(c,, S, 1) where

a ¢,. (Note that this setup matches the instantiation of the CTA game where j = 1.) The left

:extore

rectangle shows the resulting distribution over distributions of configurations after one step of the ¢,

configuration. The right circle shows the resulting distribution over distributions of configurations

after one step of the ¢, configuration. Due to the results from Step 2, we can reason that ¢, =§ ¢,
Store

and that ! =§ /. We can also conclude that R, < R, and that R] < RJ. The final step of

_éxmre

the proof is to show that the interactions from the resulting two distributions (i.e., the top circle and

83

bottom circle) are computationally indistinguishable. That is, we show that p; is equal to p, and also

Pl is equal to p, with all but negligible probability.

5.4.2 LEVERAGED FORGERY

Whereas in the previous subsection we considered the security of encryptions, in this case we con-
sider the security of the signatures. We show that an adversary cannot leverage a Clio computation
to illegitimately produce a signed value.

A digital signature scheme is secure if it is difficult to forge signatures of messages. Clio requires
its digital signature scheme to be secure against existential forgery under a chosen-message attack,
where the adversary is a non-uniform ppt in the size of the key. Often stated informally in the lit-
erature [32], a digital signature scheme is secure against existential forgery if no adversary can succeed
in forging the signature of one message, not necessarily of his choice. Further, the scheme is secure
under a chosen-message attack if the adversary is allowed to ask the signer to sign a number of mes-
sages of the adversary’s choice. The choice of these messages may depend on previously obtained
signatures.

Parallel to CPA and CTA, we adapt the definition of existential forgery for Clio, which we call
leveraged forgery. Intuitively, it should not be the case that a high integrity signature can be pro-
duced for a value when it is influenced by low integrity information. We capture this intuition in the

following theorem:

Theorem 13 (Leveraged Forgery). For a principal p and all keystores P, non-uniform ppts
A, and labels L, integers j, |, where Uyore = authorityOf(Po) and 1(k) T p, if 11 is secure against

existential forgery under chosen-message attacks, then

PT‘[<b:l> € Valuesp(R') and <b: > ¢ Valuesp(R)
| P Gen({p}) P =Pow P
1,8, A, < A(pub(P));
(e, R, V) stepZﬂre((Start(P), Clr(P) |), S.,));

R+ R;

!,8" «+ A,(R);

(d,R', V') stepzm((Start(Po), Clr(P) | 7),S.));
R «]R’]

Intuitively, the game is structured as follows. First, an adversary chooses a term 7 and strategy S

84

that will be run with high integrity (i.e., Start(P) where P has p’s authority). The adversary sees
the interactions R produced by the high integrity computation (which in general will include high
integrity signatures).

With that information, the adversary constructs a new term ¢ and new strategy S " that will be
run with low integrity (i.e., Start(P,)). Note that the strategy may internally encode high integrity
signatures learned from the high integrity run that it can place in the store.

The interactions produced by this low integrity computation should not contain any high in-
tegrity signatures (i.e., are signed by p). The adversary succeeds if it produces a new valid labeled
bitstring <& : /> that did not exist in the first run. In the experiment, the Valuesp metafunction
extracts the set of valid labeled bitstrings (i.e., can be deserialized correctly) using the parameterized

keystore P to perform the category key decryptions.

The proof of this theorem is in two parts. First we show that the label of a value being stored by a
computation is no more trustworthy than the current label of computation. Second, we show that
the current label never becomes more trustworthy than the starting label. This means that a low
integrity execution (i.e., starting from (Start(P,), Clr(P) | 1)) cannot produce a high integrity
value (i.e., a labeled value <b: /> such that (/) C7 p).

5.5 CL10 IN PRACTICE

In this section, we describe our prototype implementation and a case study using Clio.

5.5.1 IMPLEMENTATION

We implemented a Clio prototype as a Haskell library, in the same style as LIO. Building on the LIO
code base, the Clio library consists in an API for defining and running Clio programs embedded
in Haskell. The library also implements a monitor that oversees the execution of the program and

orchestrates three interdependent tasks:

* Information-flow control Clio executes the usua enforcement mechanism; in
Inf tion-fl trol Cl th 1 LIO IFC enf h
particular, it adjusts the current label and clearance and checks that information flows accord-

ing to the DC labels lattice.

+ External key-value store Clio handles all interactions with the store, realized as an

external Redis database." This is accomplished by using the hedis Haskell library,” which im-

‘http://redis.io/
2http://hackage.haskell.org/package/hed'is

8s

http://redis.io/
http://hackage.haskell.org/package/hedis

plements a Redis client.

* Cryptography Clio takes care of managing and handling cryptographic keys as well as
invoking cryptographic operations to protect the security of the principals’ data as it crosses
the system boundary into/back from the untrusted store. Instead of implementing our own

cryptographic primitives, we leverage the third-party cryptonite library.*

Clio uses standard cryptographic schemes to protect the information in the store. In particular,
for efficiency reasons we use a hybrid scheme that combines asymmetric cryptography with symmet-
ric encryption. The category keys in the store are encrypted and signed with asymmetric schemes,
while the entries stored by Clio programs are encrypted with symmetric encryption and signed with
an asymmetric signature scheme.

Asymmetric cryptography We use cryptonite’s implementation of RSA, specifically OAEP
mode for encryption/decryption and PSS for signing/verification, both with 1024-bit keys and using
SHA256 as a hash. We get around the message size limitation by chunking the plaintext and encrypt-
ing the chunks separately.

Symmetric encryption We use cryptonite’s implementation of AES, specifically AES256 in
Counter (CTR) mode for symmetric encryption. We use randomized initialization vectors (IVs) for
each encryption. The library can use AESNI if the architecture supports it.

Randomness We use cryptonite’s key generation functions and its random-number generator for
initialization vectors. We have not evaluated how good these functions are as a source of random-
ness, but we remark that cryptonite can use RDRAND if the CPU supports it.

Serialization In order to avoid problems with improperly escaped strings, we encode every bit-

string in base64.

STORING AND FETCHING

For each category used in the program we generate a symmetric key and two RSA key pairs: an en-
cryption/decryption key pair and a signing/verification key pair. This information is stored in the
database after being asymmetrically encrypted and then signed as described in Section s.3.1. Category
key generation relies on the RSA key pairs for each principal involved, which should be supplied by
the user in the form of an initial keystore when the Clio computation starts.

After the relevant IFC effects have been performed, storing a labeled value involves fetching the

symmetric key for each category in its confidentiality clause as well as the signature keys that corre-

'http://hackage.haskell.org/package/cryptonite

86

http://hackage.haskell.org/package/cryptonite

spond to each category in its integrity clause, potentially generating these on the fly. The labeled
value is serialized to a bitstring, then RSA-PSS signed by at least one principal per integrity category,
and finally AES256-CTR onion-encrypted using the symmetric key for each confidentiality category.
Fetching involves the dual operations, i.e., symmetric decryption and RSA-PSS signature verifica-

tion.

UsEer API

Our library provides all the Clio operations described in the chapter, plus a few extra functions that
are necessary to glue Clio code with the rest of the program. Here are some of the most important
ones.

Clio code can be run using the evalCLIO function. This function takes two arguments: a record
initialState of type CLIOState and a Clio computation 7. The record initialState pro-
vides initial values for the current label, the current clearance, the keystore, the version map and the
store label. The function simply establishes a connection with a Redis server and executes 7 using
that database as the store and initialState as the local state.

In order to generate keystores, we provide the utility function initializeKeyMapIO. This
function takes a list of principals as argument, and produces a keystore with fresh asymmetric key
pairs for all of them. Our prototype does not provide means to store these keystores beyond the
execution of the program, but it would be straightforward for users to implement this functionality

in their own programs, or using a suitable PKI.

5.5.2 CASE STUDY

We have implemented a simple case study to illustrate how our prototype Clio implementation can
be used to build an application. In this case, we have built a system that models a tax preparation
tool and its interactions with a customer (the taxpayer) and the tax reporting agency, communicat-
ing via a shared untrusted store. We model these three components as principals C (the customer),
P (the preparer) and IRS (the tax reporting agency). The actions of each of these three principals
are modeled as separate Clio computations customerCode, preparerCode and irsCode, respec-
tively. We assume that the store level £y, restricts writes to the store in confidential contexts, i.e.
¢ = (L, T,S), where Sis the principal running as the store.

The customer Cinitially makes a record with his/her personal information, including his/her
name, social security number (SSN), declared income and bank account details, modeled as the type

TaxpayerInfo. Figure 5.7 shows the customer code on the left, modeled as a function that takes

87

customerCode :: TaxpayerInfo — LIO () preparerCode :: LIO () irsCode :: LIO Bool

customerCode tpi = do preparerCode = do irsCode = do
info <— label (CV PV IRS, C, S) tpi d < label (P IRS, PV C, S) notFound let /= (IRS,PV CVIRS,S)
store taxpayer_info info info < fetch » taxpayer_infod d < label [emptyTR
return () 7 <— tolabeled (P VIRS,PV C, S) $ do Iy < fetch + tax_returnd
i < unlabel info tr < unlabel [v
return (prepareTaxes i) return (verifyReturn #r)

store tax_returnz

Figure 5.7: Customer code (left), Preparer code (middle), and IRS code (right)

this record as an argument, tpi. The first step is to label tpi with the label (CV PV IRS, C, S).
The confidentiality component is a disjunction of all the principals in the system, reflecting the fact
that the customer expects both the preparer and the IRS to be able to read the data. The integrity
component is just C since this data can be vouched for only by the customer at this point, while the
availability is trusted since these values haven’t been exposed to (and possibly corrupted by) the ad-
versary in the store yet. The final step of the customer is to store their labeled TaxpayerInfo at key
"taxpayer_info" for the preparer to see. Note that in practice this operation creates a category
key for CV PV IRS, stores it in the database and uses it to encrypt the data, which gets signed by C.

The next step is to run the preparer code, shown in the middle of Figure 5.7. The preparer starts
by fetching the taxpayer data at key "taxpayer_info", using a default empty record labeled with
L = (PVIRS,PV C,S). The entry in the database is labeled with ,, = (CV PV IRS, C, S), but
the operation succeeds because /; T/, and the availability is properly tracked in 1, i.e., it reflects
the fact that the adversary might have corrupted this data. The code then starts a toLabeled sub-
computation to securely manipulate the labeled taxpayer record without raising its current label. In
the subcomputation, we unlabel this labeled record and use function prepareTaxes to prepare the
tax return. Since we are only concerned with the information-flow aspects of the example, we elide
the details of how this function works; our code includes a naive implementation but it would be
straightforward to extend it to implement a real-world tax preparation operation. The toLabeled
block wraps the result in a labeled value » with label /, the argument to toLabeled. Finally, the
preparer stores the labeled tax return rat key "tax_return". Note that this operation would fail if
we had not used toLabeled, since in that case the current label, raised by the unlabel operation,
would not flow to ¢, the label of the adversary.

Figure 5.7 shows the tax agency code on the right. This code fetches the tax return made by the
preparer and stored at key "tax_return". Analogously to the preparer code, we use the d value
of the fetch operation to specify the target label of the result, namely (IRS, PV CV IRS, S), which

in this case is once again more restrictive than what is stored in the database. Thereafter the labeled

88

tax return gets unlabeled and the information is audited in function verifyReturn, which returns
aboolean that represents whether the declaration is correct. In a more realistic application, this au-
diting would be performed inside a toLabeled block too, but since we are not doing any further
store operations we let the current label get raised for simplicity.

These three pieces of code are put together in the main function of the program, which we elide
for brevity. This function simply generates suitable keystores for the principals involved (using the
Clio library function initializeKeyMapIO)and then runs the code for each principal using the
evalCLIO function. As the Clio computations run, it’s possible to play the role of the adversary and

interact with the database to corrupt or attempt to read the results.

5.6 RELATED WORK

Language-based approaches. Combining cryptography and IFC languages is not new. Vaughan and
Zdancewic [81] (and later Smith and Alpizar [74]) consider a version of the decentralized label
model (DLM) with a symbolic treatment of cryptographic operations, assuming Dolev-Yao style
attackers. While such an attacker model does not cover all real-world attacks, the authors establish
a correspondence between labels and cryptographic keys. Chothia et al. [20] provide language-level
cryptographic primitives as an extension to the DLM, called the keyed-DLM, but do not provide
any security properties for their extended system. Their language has two primitives that encrypt
(and implicitly declassify) and decrypt values, whereas in Clio values are implicitly encrypted and
decrypted when interacting with the store.

Askarov et al. [6] introduce a possibilistic noninterference semantic condition that accounts for
cryptographically-masked flows: covert information-flow channels due to the cryptosystem (e.g., an
observer may distinguish different ciphertexts for the same message). This work ignores the prob-
ability distributions for ciphertexts, which might compromise security in some scenarios [s1]. In
later work, Laud [44] establishes conditions under which secure programs with cryptographically-
masked flows are computationally secure, i.e., they satisfy computational noninterference [43]. Four-
net and Rezk [28] describe a language that directly embeds cryptographic primitives and provide a
language-based model of correctness, where cryptographic games are encoded in the language itself
so that security can range from symbolic correctness to computational noninterference.

Availability has not been extensively examined as an information flow property. Li et al. [46] dis-
cuss the relationship between availability and integrity as information flow properties, and state a
(termination- and progress-insensitive) noninterference property for availability. Zheng and Myers

[92] extend the DLM with availability policies, which express which principals are trusted to make

89

data available. They present a semantics that is strict with respect to unavailable values, and prove

a noninterference guarantee for availability. In their setting, availability is, in essence, the integrity
of progress [7]: low-integrity inputs should not affect the availability of high-availability outputs.
In our work, availability tracks the successful verification of signatures and decryption of cipher-
texts, and has analogies with Zheng and Myers’ approach. Chang et al. [14] also consider how low-
integrity inputs affect availability: they use a static dependency analysis to find “inputs of coma” for
C programs, i.e., inputs that will cause the program to loop forever.

Systems. Only a few existing IFC tools use cryptography to protect confidentiality and integrity
of data, including DStar [91] and Fabric [48] (and its predecessor Jif/Split [89, 93]). DStar is a pro-
tocol to extend decentralized IFC in a distributed system. Every DStar node has an exporzer that is
responsible for communicating over the network. Exporters also establish the security categories
trusted by a node via private/public keys. Fabric is a platform and statically-checked fine-grained
IFC language. Fabric supports the secure transfer of data as well as code [3] through, in part, the use
of cryptographic mechanisms. In contrast to Fabric, Clio provides coarse-grained IFC and uses DC
labels instead of the DLM. In contrast to both DStar and Fabric, this work establishes a formal basis
for security of the use of cryptography in the system. The lack of a formal proof in both DStar and
Fabric is not surprising, given that they target more ambitious and complex scenarios (i.e., decentral-
ized information-flow control for distributed systems).

Remote storage. While data can be stored and fetched cryptographically, information can be still
leaked through access patterns. Private Information Retrieval protocols aim to avoid such leaks by
hiding queries and answers from a potentially malicious server [19] similar to Clio’s threat model.
For performance reasons [63, 73], some approaches rely on a small trusted execution environment
provided by hardware [24, 84] that provides the cryptographic support needed to obliviously query
the data store [9, 75, 86]. This technique can be seen in oblivious computing [49], online adver-
tising [10], and credit networks [56] for clients which are benign or follow an strict access proto-
col. If clients are malicious, however, attacker’s code may leak information though its access pat-
terns. Besides forcing communication to occur in non-sensitive contexts (as we do in this work), our
language-based techniques could be extended to guarantee that untrusted code follows an oblivious

protocol.

5.7 CONCLUSION

Clio is a computationally secure coarse-grained dynamic information-flow control library that uses

cryptography to protect the confidentiality and integrity of data. The use of cryptography is hidden

90

from the language operations and is controlled instead through familiar language constructs in an ex-
isting IFC library, LIO. Clio ensures that the system security is not violated by combining attackers’
low-level capabilities (i.e., accessing raw bit strings and observing store access patterns) together with
their ability to craft their own programs to run on the system. These assurances are shown formally
in a computational model through a novel proof technique that combines proof techniques from
cryptography and programming languages theory. We provide a prototype implementation of Clio
in Haskell, which includes a decentralized cryptographic encoding of DC labels. We see Clio as being
essential for providing a foundation for real-world secure IFC systems that, in part, use cryptography

as a mechanism to enforce information security guarantees.

91

Conclusion

This dissertation presents three enhancements to software components of large internet-connected
applications. These per-component enforcement mechanisms enhance components by performing
additional actions that modify the components’ behavior. Even if only some of the components
are enhanced due to partial deployment, there is still some benefit to the overall system as there are
fewer unchecked illegitimate behaviors.

This dissertation takes the approach of enhancing the existing components of systems rather than
developing new systems. In doing so we can focus on particular weaknesses in existing systems. In
the setting of Whip (Chapter 2), we focus on functional correctness. In the setting of restricted priv-
ileges (Chapter 4), we focus on unsafe use of downgrading operations. In the setting of Clio (Chap-
ter 5), we focus on unsafe use of cryptography.

Additionally, the enhancements are adaptable to many existing systems. In the setting of Whip, a
Whip adapter supports many message formats and deployment strategies. In the setting of restricted
privileges, the restricted privileges can be adapted to any IFC language that uses capability-like privi-
leges to downgrade information (e.g., COWL [79] and Hails [78]). In the setting of Clio, the crypto-
graphic mechanisms can be adapted to any IFC language that interacts with a key-value store.

This dissertation focuses on how programmers write large internet-connected applications. Some
of the challenges programmers in this setting face include: ensuring their users’ data secrecy and
integrity is upheld despite interacting with an untrusted store, and interacting with other compo-

nents over simple network protocols that do not ensure their desired application-specific behaviors.

92

The goal of this dissertation is not to show how to solve the exact instances of problems faced by
programmers when writing these applications, but instead to give them the linguistic tools to make
their job easier and more systematic. The dissertation is not a survey on bug-finding or code patch-
ing, though some bugs are presented. Instead, this dissertation presents enhancements that make
the process of bug finding and code patching easier for programmers. In that way, this dissertation
answers the question of how programmers can write large-scale internet-connected applications de-
spite the complications that arise from dealing with untrusted participants on the internet.

The enhancements were created through a process of first determining the common aspects of
componentization that are relevant to the problem, and then inventing a mechanism that solves the
problem at those component boundaries. By following that methodology, only the problematic
parts of a system are affected in contrast to developing an entirely new system. Further, the solution
is applicable to many systems as the enhancements are designed around the common aspects of the
component boundaries and not on system-specific details.

The enhancements go a step further to develop solutions that can also operate under partial de-
ployment. The support for partial deployment is particularly important for large internet-connected
applications where the governance of components is decentralized. In this setting, it is easier to
convince a portion of component owners to subscribe to an (initially partial) improvement to the
system than to convince the entire group to subscribe to a new system. When changes to compo-
nents can not be made in a centralized and coordinated manner, support for partial deployment is
required in order to support a feasible migration path for solving the problem in a deployed system.

Instead of changing the way programmers develop large internet-connected applications, this dis-
sertation instead advocates to enhance the existing components programmers already use. In doing
so programmers can effectively solve or isolate the particularly hard problems they face without sub-
stantially changing the way they write software. Programmers can apply the enhancements where
they need them to solve the particular problems they are faced with. As a result, programmers can
focus on writing code more efficiently and ultimately build applications that are more trustworthy

and usable with little additional effort.

93

[1]
[2]

[10]

References

State of Soffware Security, volume 6. Veracode, 201s.

Ana Almeida Matos and Gerard Boudol. On declassification and the non-disclosure policy.
In Proceedings of the 18th IEEE Computer Security Foundations Workshop, pages 226—240,

2005.

Owen Arden, Michael D. George, Jed Liu, K. Vikram, Aslan Askarov, and Andrew C. Myers.
Sharing mobile code securely with information flow control. In Proceedings of the 2012 IEEE

Symposinum on Security and Privacy, pages 191-205, 2012.

Owen Arden, Jed Liu, and Andrew C. Myers. Flow-limited authorization. In Proceedings of
the IEEE 28th Computer Security Foundations Symposium, pages 569—583, 201s.

Aslan Askarov and Andrew Myers. A semantic framework for declassification and endorse-

ment. In Proceedings of the 19th European Symposium on Programming, 2010.

Aslan Askarov, Daniel Hedin, and Andrei Sabelfeld. Cryptographically-masked flows. In
Proceedings of the 13th International Static Analysis Symposium, August 2006.

Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. Termination-insensitive
noninterference leaks more than just a bit. In Proceedings of the 13th European Symposium on

Research in Computer Security: Computer Security, 2008.

Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. Predictive black-box mitigation of
timing channels. In Proceedings of the 17th ACM Conference on Computer and Communica-

tions Security, 2.010.

D. Asonov. Querying Databases Privately: A New Approach to Private Information Re-

trieval. Springer, 200s.

Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. Obliviad: Provably secure
and practical online behavioral advertising. In Proceedings of the 2012 IEEE Symposium on

Security and Privacy, 2012.

94

[11]

[x6]

[19]

[20]

K.]J. Biba. Integrity considerations for secure computer systems. Technical Report ESD-TR-
76-372, MITRE Corporation, 1977.

Arnar Birgisson, Alejandro Russo, and Andrei Sabelfeld. Capabilities for information flow.
In Proceedings of the 6th Workshop on Programming Languages and Analysis for Security,

2011.

Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-by-
contract for distributed multiparty interactions. In Proceedings of the 215t International

Conference on Concurrency Theory, pages 162—176, 2010.

Richard Chang, Guofei Jiang, Franjo Ivancic, Sriram Sankaranarayanan, and Vitaly
Shmatikov. Inputs of coma: Static detection of denial-of-service vulnerabilities. In Pro-
ceedings of the 2009 22nd IEEE Computer Security Foundations Symposium, pages 186-199,

20009.

Feng Chen and Grigore Rosu. MOP: An efficient and generic runtime verification frame-
work. In Proceedings of the 22nd ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems and Applications, pages 569—588, 2007.

Winnie Cheng, Dan R.K. Ports, David Schultz, Victoria Popic, Aaron Blankstein, James
Cowling, Dorothy Curtis, Liuba Shrira, and Barbara Liskov. Abstractions for usable in-
formation flow control in Aeolus. In Proceedings of the 2012 USENIX Annual Technical

Conference, pages 139-1s1, 2012.

Stephen Chong and Andrew C. Myers. Language-based information erasure. In Proceedings

of the 18th IEEE Computer Security Foundations Workshop, pages 241-254, June 200s.

Stephen Chong and Andrew C. Myers. Decentralized robustness. In Proceedings of the 1gth
IEEE Workshop on Computer Security Foundations, pages 242256, 2006.

B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In

Proceedings of the 36th Annual Symposium on Foundations of Computer Science, 1995.

Tom Chothia, Dominic Duggan, and Jan Vitek. Type-based distributed access control. In
Proceedings of the 16th IEEE Computer Security Foundations Workshop, pages 170-186, June

2003.

95

[21]

Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens. Flowfox: a
web browser with flexible and precise information flow control. In Proceedings of the 2012

ACM Conference on Computer and communications security, 2012.

Tim Dierks. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246, 2008.
URL https://rfc-editor.org/rfc/rfcs246.txt.

Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and Matthias Felleisen. Correct
blame for contracts: No more scapegoating. In Proceedings of the 38th ACM Symposium on

Principles of Programming Languages, pages 215—226, 2011

Xuhua Ding, Yanjiang Yang, Robert H. Deng, and Shuhong Wang. A new hardware-assisted
PIR with O(n) shuffle cost. International Journal of Information Security, 9(4), 2010.

Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler, Eddie
Kohler, David Mazi¢res, Frans Kaashoek, and Robert Morris. Labels and event processes in
the Asbestos operating system. In Proceedings of the 20th ACM Symposium on Operating

Systems Principles, 2005.

Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In Pro-
ceedings of the 7th ACM SIGPLAN International Conference on Functional Programming,
pages 48-59, 2002.

Simon Foley, Li Gong, and Xiaolei Qian. A security model of dynamic labeling providing
a tiered approach to verification. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 142-158, 1996.

Cédric Fournet and Tamara Rezk. Cryptographically sound implementations for typed
information-flow security. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 323—33s, 2008.

Martin Fowler and James Lewis. Microservices, 2014. URL http://martinfowler.com/

articles/microservices.html.

Daniel B. Giftin, Amit Levy, Deian Stefan, David Terei, David Mazieres, John Mitchell, and
Alejandro Russo. Hails: Protecting data privacy in untrusted web applications. In Proceed-

ings of the Symposium on Operating Systems Design and Implementation, October 2012.

96

https://rfc-editor.org/rfc/rfc5246.txt
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

(31]

(34]

(36]

[40]

J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 11—20, April 1982.

Shafi Goldwasser and Mihir Bellare. Lecture Notes on Cryptography, chapter 10. 2001.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental poker
keeping secret all partial information. In Proceedings of the 14th Annual ACM Symposinm
on Theory of Computing, pages 365-377, 1982.

Sylvain Hall¢, Taylor Ettema, Chris Bunch, and Tevfik Bultan. Eliminating navigation errors
in web applications via model checking and runtime enforcement of navigation state ma-

chines. In Proceedings of the IEEE/ACM International Conference on Automated Software

Engineering, pages 235-244, 2010.

Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. JSFlow: Tracking in-
formation flow in JavaScript and its APIs. In Proceedings of the 29th ACM Symposinum on
Applied Computing, 2014.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. In Proceedings of the 35th Annunal ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 273—284, 2008.

John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, and Michael J. West. Scale and performance in a distributed file
system. ACM Transactions on Computer Systems, 6(1):51-81, February 1988.

Raymond Hu, Rumyana Neykova, Nobuko Yoshida, Romain Demangeon, and Kohei
Honda. Practical interruptible conversations - distributed dynamic verification with ses-
sion types and Python. In Runtime Verification - 4th International Conference, pages 130-148,

2013.

Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and blame assignment for
higher-order session types. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages $82—594, 2016.

Matjaz B. Juric. Business Process Execution Language for Web Services BPEL and BPEL4W'S
2nd FEdition. 2006.

97

[41] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek, Eddie
Kohler, and Robert Morris. Information flow control for standard OS abstractions. In

Proceedings of the 215t Symposium on Operating Systems Principles, October 2007.

[42] Leslie Lamport. The part-time parliament. ACAM Transactions on Computer Systems, 16(2.):
133-169, May 1998.

[43] Peeter Laud. Semantics and program analysis of computationally secure information flow. In

Proceedings of the 1oth European Symposium on Programming Languages and Systems, 2001.

[44] Peeter Laud. On the computational soundness of cryptographically masked flows. In Pro-
ceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 337-348, 2008.

[45] Gary T Leavens, Albert L Baker, and Clyde Ruby. Preliminary design of JML: A behavioral

interface specification language for Java. Soffware Engineering Notes, 31(3):1-38, 2006.

[46] PengLi, Yun Mao, and Steve Zdancewic. Information integrity policies. In Proceedings of the
Workshop on Formal Aspects in Security and Trust, 2003.

(47] Zheng Li, Yan Jin, and J. Han. A runtime monitoring and validation framework for web
service interactions. In Proceedings of the Australian Software Engineering Conference, pages

10-79, 2006.

[48] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C. Myers. Fabric:
A platform for secure distributed computation and storage. In Proceedings of the ACM

SIGOPS z2nd Symposium on Operating Systems Principles, pages 321334, 2009.

[49] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic, John Ku-
biatowicz, and Dawn Song. PHANTOM: Practical oblivious computation in a secure pro-
cessor. In Proceedings of the ACM SIGSAC Conference on Computer & Communications

Security, 2013.

[so] Heiko Mantel and David Sands. Controlled declassification based on intransitive noninterfer-
ence. In Proceedings of the znd Asian Symposium on Programming Languages and Systems,

volume 3303, pages 129—145, November 2004.

[51] John McLean. Security models and information flow. In Proceedings of the IEEE Symposium
On Security And Privacy, pages 180-187, 1990.

98

[52]
(53]

[s6]

[63]

(64]

Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, 1988.

Bertrand Meyer. Design by contract. In 4dvances in Object-Oriented Soffware Engineering,
pages 1-50. 1991

Bertrand Meyer. Applying design by contract. JEEE Computer, 25(10):40—51, 1992.

Michael Mimoso. D-Link accidentally leaks private code-signing keys. https://
threatpost.com/d-link-accidentally-leaks-private-code-signing-keys/

114727/, September 2015.

Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Kim Pecina. Privacy preserving
payments in credit networks: Enabling trust with privacy in online marketplaces. In Proceed-

ings of the Network and Distributed System Security Symposium, 201s.

A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java Information Flow.

Software release. http://www.cs.cornell.edu/jif, 2001-.

Andrew C. Myers and Barbara Liskov. A decentralized model for information flow control.

In Proceedings of the 16th ACM Symposium on Operating System Principles, pages 129-142,
1997

Andrew C. Myers and Barbara Liskov. Complete, safe information flow with decentralized

labels. In Proceedings of the IEEE Symposium on Security and Privacy, 1998.

Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust declassification
and qualified robustness. Journal of Computer Security, 14(2):157-196, April 2006.

Object Management Group. CORBA component model. Specification Version 3.3, 2012.
URL http://www.omg.org/spec/CORBA/3.3/.

Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary copy method
to support highly-available distributed systems. In Proceedings of the 7th Annual ACM
Symposium on Principles of Distributed Computing, pages 8-17, 1988.

Femi G. Olumofin and Ian Goldberg. Revisiting the computational practicality of private
information retrieval. In Proceedings of the 1sth International Conference on Financial Cryp-

tography and Data Security, March 2011.

Rafael Pass and Abhi Shelat. .4 Course in Cryprography, chapter 7. 3rd edition, 2010.

99

https://threatpost.com/d-link-accidentally-leaks-private-code-signing-keys/114727/
https://threatpost.com/d-link-accidentally-leaks-private-code-signing-keys/114727/
https://threatpost.com/d-link-accidentally-leaks-private-code-signing-keys/114727/
http://www.cs.cornell.edu/jif
http://www.omg.org/spec/CORBA/3.3/

[65]

[69]

[74]

[75]

Frangois Pottier and Sylvain Conchon. Information flow inference for free. In Proceedings
of the sth ACM SIGPLAN International Conference on Functional Programming, pages
46-57, 2000.

A. W.Roscoe and M. H. Goldsmith. What is intransitive noninterference? In Proceedings of

the 12th IEEE Computer Security Foundations Workshop, 1999.

Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett
Witchel. Laminar: Practical fine-grained decentralized information flow control. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, 2009.

Alejandro Russo. Functional Pearl: Two can keep a secret, if one of them uses Haskell. In
Proceedings of the zoth ACM SIGPLAN International Conference on Functional Program-

ming, pages 280—288, 201s.

Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. JEEE

Journal on Selected Areas in Communications, 21(1):5-19, January 2003.

Andrei Sabelfeld and David Sands. Dimensions and principles of declassification. In Proceed-
ings of the 18th IEEE Computer Security Foundations Workshop, pages 255-269, June 200s.

Rafia Shaikh. Microsoft accidentally leaks Xbox Live keys, user data
at risk of man-in-the-middle attacks. http://wccftech.com/

microsoft-accidentally-leaks-xbox-1live-keys/, December 2o015.
Randy Shoup. Service architecture at scale: Lessons from Google and eBay. 2015.

Radu Sion and Bogdan Carbunar. On the computational practicality of private information
retrieval. In Proceedings of the Network and Distributed Systems Security Symposium. Stony
Brook Network Security and Applied Cryptography Lab Tech Report, 2007.

Geoffrey Smith and Rafael Alpizar. Secure information flow with random assignment and

encryption. In Proceedings of the 4th ACM Workshop on Formal Methods in Security, pages
33—44, 2006.

S. W. Smith and D. Safford. Practical server privacy with secure coprocessors. I/BM Systems

Journal, 40(3), March 2001.

I00

http://wccftech.com/microsoft-accidentally-leaks-xbox-live-keys/
http://wccftech.com/microsoft-accidentally-leaks-xbox-live-keys/

[76]

(78]

[79]

(80]

(81]

[82]

[83]

(84]

(85]

(86]

Deian Stefan, Alejandro Russo, David Mazieres, and John C. Mitchell. Disjunction category
labels. In Proceedings of the 16th Nordic Conference on Security IT Systems, pages 223-239,

October 2011.

Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazieres. Flexible dynamic
information flow control in Haskell. In Proceedings of the 4th ACM symposium on Haskell,

pages 95-106, 2011

Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C. Mitchell, and David Maz-
ieres. Addressing covert termination and timing channels in concurrent information flow
systems. In Proceedings of the 17th ACM SIGPLAN International Conference on Functional

Programming, September 2012.

Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, Dave Herman, Brad Karp,
and David Mazi¢res. Protecting users by confining JavaScript with COWL. In Proceedings of
the 11th Symposium on Operating Systems Design and Implementation, October 2014.

Ron van der Meyden. What, indeed, is intransitive noninterference? In Proceedings of the
12th European Symposium On Research In Computer Security, volume 4734, pages 235—250,

September 2007.

Jeffrey A. Vaughan and Steve Zdancewic. A cryptographic decentralized label model. In
Proceedings of the 2007 IEEE Symposium on Security and Privacy, pages 192—206, 2007.

Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow

analysis. Journal of Computer Security, 4(3):167-187, 1996.

Jim Waldo. Remote procedure calls and Java remote method invocation. JEEE Concurrency,

6(3):5-7,1998.

Shuhong Wang, Xuhua Ding, Robert H. Deng, and Feng Bao. Private information retrieval
using trusted hardware. In Proceedings of the 11th European Symposium on Research in Com-

puter Security, pages 49—64, 2006.

Alma Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usability evaluation of PGP s.0.
In Proceedings of the 8th Conference on USENIX Security Symposium, 1999.

Peter Williams and Radu Sion. Usable PIR. In Proceedings of the Network and Distributed

System Security Symposium, 2008.

I0I

[87]

[88]

Alexander Yip, Neha Narula, Maxwell Krohn, and Robert Morris. Privacy-preserving

browser-side scripting with BFlow. In EuroSys, 2009.

Steve Zdancewic and Andrew C. Myers. Robust declassification. In Proceedings of the 14th
IEEE Computer Security Foundations Workshop, pages 15—23, 2001

Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Untrusted
hosts and confidentiality: Secure program partitioning. In Proceedings of the 17th ACM
Symposium on Operating System Principles, pages 1-14, October 2001.

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazieres. Making infor-
mation flow explicit in HiStar. In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, pages 263-278, 2006.

Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazi¢res. Securing distributed systems
with information flow control. In Proceedings of the sth USENIX Symposium on Networked
Systems Design and Implementation, pages 293-308, 2008.

Lantian Zheng and Andrew C. Myers. End-to-end availability policies and noninterference.
In Proceedings of the 18th IEEE Computer Security Foundations Workshop, pages 272286,

June 200s.

Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve Zdancewic. Using replication
and partitioning to build secure distributed systems. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 236—250, May 2003.

I02

A

Whip Definitions and Proofs

103

A1 REMAINING DEFINITIONS

contract_for(c,b) = (n,v)if 3ee — IV € blame, (o).

ep(ee) = b.y Anm(ee) = n
contract_for(a,b) = (n,x)if (Jee — Ix € blame, (o).

ep(ee) = b.y A nm(ee) = n)

A (Ved + Tc € blame, (o). ifep(ed) = b

then nm(ee) = kand ¢ = x)
ep(a.rsatisfiesn(v)) = ar
ep(a.iexpects se) = a.i
nm(a.rsatisfiesn(v)) = n
nm(a.i expects se) = nm(se)

names([@) = {4} names(mon/c, P%)) = {4}

4 = names(P) 2, = names(Q)

names(m to a) =0 names(m to a) =10 names(P|| Q) =4 Ua,

labels([@) =0 1labels(moni(c, P%)) = {I}

L, = labels(P) [, = labels(Q)
labels(m to a) =(labels(m to a) =0 labels(P|| Q) = LU/

A1 CONGRUENCE RELATION

P=F Q=0
P=P Plo=90|P Plo="L|¢

104

A CoMPLETE THEOREMS AND PROOFS

V(asatisfiesk(v) — v) € C.Cla) =k

c=c
PSP
FS Pwf
PHS Q PHFS R
names(Q) Nnames(R) = labels(Q) N labels(R) =0
PF§ Q||R
conf, < C I+ S = spec(0)

Vse. se € dom(blame,) iff se € dom(prov,)
Vse > [€ blame,, [€ L. PI- blame for se
V4#tn from bexpectsse — [€ blame,, [€ L P I blame [for se
Var n € C.asatisfies k(v) — v € conf,

P+S monl(a, P?)

m=req #n from b : s to aor
m=reply #n from b : s to a

P @ PHS m to a

k=C(a) {identified(m) — c} < C
vl €1 PI- blame [for from(a) satisfies k(index(m)) VI € ly. PIF blame /for identified(m)
PFS mwith {se-blame:=f id-conf:=¢; id-blame:=ly} to b

First, note that we define well-formedness judgment P § P, where Pis the entire process, and
P is some subprocess of P. For brevity, we used wellformedness judgment - Pwf where P was the
entire process, and so treat that as equivalent to P -§ P.

Lemma 1 (Preservation of Well-formedness over congruence). IfP F$ P and P = P"

and P = P" then P’ l—g .

Proof. The congruence relation only changes the order of the processes. The well-formedness rela-
tion is not sensitive to ordering of the processes. O

Lemma 2 (lift Preserves Store Well-formedness). If P[mon{(c, P#)] F$ mon!(o, P#) and
o', mwith {se-blame:=; id-conf:=¢; id-blame:=ly} to b = lift,(k,c,m,[)and (if
from(m) # athen [= t), then
Vse — 1 € blame,s, I' € L. Plmon’ (o, P%)] I+ blame / for seand
V(#n fromcexpectsse) — [€ blamey, I € L Plmon (o, P4)] IF
blame / for se.

Proof. By inspection of the 11 ft rule given, there are two entries that can be updated: the service
endpoint, and se;y. We first show VI € L. Plmoni(c’, P%)] I+ blame / for se, then V/' €
L4. Pmonl(c’, P%)] IF blame ! for se;q.

105

For the well-formedness of se, we take cases on if se € dom(blame,):

+ Case se & dom(blame,):

Itis the case then that /; = {/}. Due to well-formedness, we have that Vse. se € dom(blame,)
iff se € dom(prov,,). It will be the case then that se & dom(prov,) so pe; = b intro. If
b = awe can form the following derivation:

prov,(se) = a intro
P[mon!(c’, P4)] IF blame for se

Otherwise we are in a partially deployed case (based on the reduction rules that call 11 ft). As
a result, in these cases [, = 1. So we can form the partial deployment derivation:

prov,(se) = b intro
P[mon)(c’, P4)] I blame f for se

+ Case se € dom(blame,):

Due to well-formedness, Vse € blame,, then V/ € . P[mon{(o, P%)] I blame / for se.
Additionally, since no provenance or blame or provenance information is overwritten the
derivation must hold for o, so, ¥/ € 1. P[mon/(c’, P#)] I+ blame / for re.

Next we show the well-formedness of se;z. We also perform a case analysis on the type of the message
together with if se;; € dom(blame,).

+ Case type(m) == req A sejy € dom(blame,): Due to well-formedness of the store, we
have that Vse + [€ blame,, [€ L P[mon{(c, P4)] I blame /for se, so it must be the
case that V/' € [z. P[mon!(c, P4)] I+ blame ! for se;y. As a result, since the entry is replaced
with itself along with its provenance (i.e., no information is replaced), the well-formedness
condition still holds.

- Case type(m) == req A seiy & dom(blame,): Itis the case then that f; = {/}. Due
to well-formedness, we have that Vse. se € dom(blame,) iffse € dom(prov,). Asaresult
seiq & dom(prov,).

Next we consider if & = 4. It will be the case that prov,(se;s) = 4 intro. So the derivation
for this case is:

provy, = a intro
Plmoni(c’, P4)] I- blame [for se;4

Otherwise, if & # 4, we are in a partially deployed case (based on the reduction rules that call
11ift). Asaresult, in these cases , = . So we can form the partial deployment derivation:

106

provy, = b intro
P[mon!(c’, P#)] I- blame t for se;g

+ Case type(m) == reply A seiy € dom(blame,):
The same reasoning applies for the case if type(m) == reqand se;q € dom(blame,) as the
entry is looked up in the same fashion for requests and replies.

+ Case type(m) == reply A sejy & dom(blame,):

Itis the case then that iy = k. From well-formedness of the store, ¥/ € L. P[mon!(c, P*)] I
blame / for se. Also from store well-formedness, it must be the case that se;; & dom(blame,)
as Vse. se € dom(blame,) iff se € dom(prov,,). Because of this, we know that prov, (se;g) =
se intro.

We can directly set up the derivation for an unconfirmed service identification for each / € £;:

(from well-formedness)
P[mon!(c, P*)] I blame / for se
P[monl(c, P4)] I- blame ! for se;y

prov,(seis) = (se intro)

Lemma 3 (lower Preserves Store Well-formedness). If
PS$ mono’, P#) || mwith {se-blame:=[; id-conf:=¢; id-blame:=/[z} to band
o', m = lowery(k,c, mwith {se-blame:=[; id-conf:=¢; id-blame:=[;} to b) then
Vse — 1 € blame,s, I' € L. Plmon’ (o, P)] I blame / for seand
V(#n fromcexpectsse) — [€ blame,s, I € L Plmont (o, P%)] IF
blame / for se.

Proof. Since the message is well-formed, there will be blame consistent with provenance for the re-
ply and service identified. Additionally, the provenance information in the receiving adapter is not
overwritten so any existing derivations of blame consistent with provenance will still hold. As a re-
sult, the services added to the store will still have a valid derivation of blame consistent with prove-
nance. L]

Lemma 4 (lift and lower preserve state). If P[mon{a, P4)] F§ monl(o’, P#) and either
o' m = lifty(k,c,m, 1) oro’,m = lower,(k, c,m), then

1. §= spec(cd’)
2. Vse. se € dom(blamey) iff se € dom(prov,)

3. Var— k€ C.asatisfies k(v) — v € conf,

107

Proof. For the first case, S = spec(o”), it is clear from the store updates in the metafunctions that
the store is not changed.

For the second case, Vse. se € dom(blame,) iff re € dom(prov,), itis clear by inspection that
the updates to the blame registry and provenance registry affect the same domain of services.

For the third case, Va2 +— n € C.asatisfiesk(v) — v/ € conf,, services added to the
blame registry do not ever become unconfirmed after becoming confirmed (i.e., note the usage and
definition of the confirmed_or function). As a result, if o had this property, then no replacement
could make the service become unconfirmed so it will still hold for o”.

U
Theorem 14 (Preservation of Well-formedness). IfPFS PP — P then P 1§ P.

Proof. By case analysis on step used.

+ Case Black-box Send Request
From the definition of the rule, we have

nfresh a#5b
Pl@] — P|@ || request #n from a containing s to

where P = P[[a]] and P = P[[4] || request #n from a containing s to b]. Wealso
have from our congruence rules that P[] || request #n from 4 containing s to b] =
P[@] || request #n from a4 containing s to b. We also have that P F§ P. We can
re-use the proof derivation of that to construct P F§ P[[@]. P’ can be used in place of P

on the left-hand side as it contains the same relevant processes to the blame-consistent-with-
provenance relation. We can now construct a new derivation for 7. We can use the base mes-
sage well-formed rule along with the composition rule to get:

P S Pl@] P F request #n from a containing s to b
names(P[[@]) N names(request #n from a containing s to b) =1
labels(P[[a]]) N labels(request #n from a4 containing s to b) =)

P FS Pl@] | request #n from a containing s to b

+ Case Black-box Send Reply

From the definition of the rule, we have

a#tb
Pl@] — P|@ | reply #n from a containing s to b

108

where P = P[[a)] and P = P|[a || reply #n from a containing s to b]. Wealso
have from our congruence rules that P[[@] || reply #n from a containing s to 4| =
P@] || reply #n from a containing s to b. Wealso have that P F§ P. We can
re-use the proof derivation of that to construct 7 F§ P[[@]. P can be used in place of P
on the left-hand side as it contains the same relevant processes to the blame-consistent-with-
provenance relation. We can now construct a new derivation for . We can use the base mes-
sage well-formed rule along with the composition rule to get:

P Pl@) P S reply #n from a containing s to b
names(P|[[4]) N names(reply #n from a containing s to b) =0
labels(P[[a]) N labels(reply #n from a containing 5 to b) =)
P FS Pl@]| reply #n from a containing s to b

+ Case Black-box Receive
From the definition of the rule, we have

Pl@ || m to a — Pl@]

where P = P[[@ || m to 4 and P = P|[[@]. Wealso have that P F§ P. We can re-use
the proof derivation of that to construct P’ F§ P[[a]] by removing the part of the derivation
that included the rule used for the received message. 7 can be used in place of P on the left-
hand side as it contains the same relevant processes to the blame-consistent-with-provenance
relation. With this, we can now construct a new derivation for P’ directly to get 7 F§ P[[@].

+ Case Adapter Send Enhanced
From the definition of the rule, we have

(k,v') = contract_for,(b,m) o ,m="1lift,(k, v ,m,l)
Plmon! (o, P*||m to b)] — P[mon{o’, P*)||m to 4]

where P = P[mon)a, P4 || m to b)]and P = P[mon{c’, P*)||# to &]. From Lem-

mas 2 and 4, we can show that P[mon!(o”, P4)] +$ mon/(o’, P#). We note that we can use

P in place of P[mon/(c’, P#)] as it contains everything but the extra enhanced message, so

all derivations will still hold for P'. Since the labels came from the store which is well-formed,

along with the confirmation status, the blame premises for the message hold. Thatis, V/ €

L PIF blame [for b satisfies k(index(m)) and VI € [4. PI- blame /for identified(m)

We can now set up the following derivation.

109

= PF§ mwith {se-blame:=/; id-conf:=¢; id-blame:=ly} to b
k=C(b) _ type(m) == req
{identified(m) — ¢} <C VIle L PIF blame [for bsatisfies k(index(m))
Vi € [y. PIF blame /[for identified(m)
P to b P +$ monl(o”, P*)
labels(7 to b) N labels(mon{(o’, P4)) = §)
P +§ Plmoni(a’, P)] || to b

names(7 to b) N names(mon{(c’, P4)) = 0

+ Case Adapter Receive Enhanced
From the definition of the rule, we have

(k,v') = contract_for,(b,m) o' ,m= lowery(k,v',m)
Plmon)(a, P4) || to a] — P[mon (o’ P*||m to a)]

where P = P[mon)a, P4) || to ajand P = Plmonl(o’, P*||m to a)]. Since the
enhanced message is well-formed, we can use Lemmas 3 and 4 to get that the new adapter
state o’ is well-formed. Additionally, all unenhanced messages are well-formed, so we can use
the parallel composition rule to get

names(mon{a’, P4)) N names(m to a) = ()

PHm to a P S monl(o”, P%)
labels(mon{(o’, P4)) N labels(m to a) = ()
P F§ Plmon!(a’, P4) || m to 4]

+ Case Adapter Send Unenhanced
From the definition of the rule, we have

(k,x) = contract_for, (b, m)
o'ym=lifte(x,kym,1l) " m= lower, (k,x,m)

Pmon{(c, P*||m to b)]— P[monlc”, P4)||m to 8]

where P = Plmonl(c, P*||m to b)]and P = P[mon{(c”, P4) || m to b]. We can use
Lemmas 2 to 4 to get that the new adapter state 0" is well-formed. Additionally, all unen-
hanced messages are well-formed, so we can use the composition rule to get

names(monXa’, P4)) N names(m to b) = ()
PrSm to b P < monl(a”, P%) (mon{(&”, P)) ()

labels(mon{(c’, P4)) N labels(m to b) =0
P FS Plmonk(a’, P4) || m to b

+ Case Adapter Receive Unenhanced
From the definition of the rule, we have

I10

(k,c) = contract_for,(a,m)
o ,im="lifte(x,m,T) ", m= lower, (k,x,m)

Pmon(c, P4) || m to a]— P[monl(c”, P*||m to a)]

where P = Plmonl(c, P4) ||m to aland P = Plmoni(c”, P*||m to a)]. We can use
Lemmas 2 to 4 to get that the new adapter state o’ is well-formed. Additionally, all unen-
hanced messages are well-formed, so we can use the composition rule to get

I 11 pa
names(mon'(c”, P*)) N names(m to a) ={
PHm to a P ¢ monl(o” | P%) (mont) ()

labels(monl(c”, P#)) N labels(m to a) = {)
P FS Plmonka”, P4 || m to a)]

+ Case Adapter Bypass Send and Receive
The adapter state is not changed and all unenhanced messages are well-formed so we can sim-
ply use the composition rule to form the new derivation of well-formedness.

With all rules of the reduction relation satisfying preservation of well-formedness, the proof is
complete.

Theorem 15 (Correct Blame). Ifwell-formed P, = P;[mon{oy, P*)] and P, — P, and
P,=P,[mon!c,, P#)] and errors,,={le} Uerrors,, then

1. ifle = Pre(se, l,), then
(a) 1fP P[monl(UI,P“ ||m to b)]and
Plmon'(o,, P?) || m’ to b]thenl, =1

(b) 1fp1 = p[monl(GI,Pa) ||m to a4]and
P, = Plmon!(c,, P*||m to a)]thenl, =1

~—

2. if le = Post(se, [), then VI € 1. P, I- blame /for se.

Proof. The first case (precondition error) is a direct result of the reduction rules for receiving a mes-
sage and the 11 ft metafunction for contract checking. The second case (postcondition error) is a
direct result of well-formedness (specifically Vse — Ic € blame,/, [€ 1. P I blame /for se) and
the 14 ft metafunction for contract checking. O

III

B

Restrictied Privileges Proofs

112

The integrity and confidentiality lattices are dual lattices, as described below. This fact is used in
subsequent proofs.

LCL = L=1 = I Ec[I
[Il—lllz = LVIL = Ill_lclz
LmirnL = LVvI, = LU°I,

Recall the robust declassification check from Theorem 6:

(C(Lfrom) ce C(Lto) e H(ch) (B.1)
and
(C(Lfrom) c® (C(Lto) e H(Lﬁ*om) (B2)

Proof of Theorem 6. As a first step, we adapt the goal in Definition 3 to C° instead of ' by way of
the lattice duality.
Soundness: We prove that (B.1) and (B.2) implies Definition 3. For that, we assume (B.1), (B.2), and

VA € CNF,C(Ls) E° 4 and C(Lpom) £ A (B.3)
having to prove that
I(Lye) £ A4 (B.4)
and
I[(Lfrom) ZC A (BS)

We only prove (B.4) by contradiction (the proof for (B.s) follows analogously). We have that,

I(L,) & 4 contradiction supposition
I(Lp) ¢ A and C(Ly) E€ A obtained from (B.3) —

C(Ls) L I(Lye) E€ 4 least upper bound
C(Lpom) E° 4 from (B.1) and transitivity

Completeness: We show that Definition 3 implies (B.1) and (B.2). Again, we prove only the left side

of the conjunct, the right side follows analogously. Consider the contrapositive of the robust declas-
sification condition (see Definition 3) with 4 = C(Ly,) LU [(L), where we disregard the I(Lpom)

half of the antecedent:

iF1(Lpe) € I(Lye) U° C(Ly,)
then C(Lz) Z° 1(Lpe) LI C(Lyy)
of C(Lrom) T 1(Lpe) LI C(Lsy)

The left side of the disjunction is false by the definition of least upper bound. We conclude that

113

C(Lpom) T I(Lye) U C(Ly,) which proves the left side of the conjunct of the robust declassifi-
cation check.

O]

Proof of Theorem 7. Soundness: We show that the robust endorsement condition (see Definition
4) implies the robust endorsement check. Consider the contrapositive of the robust endorsement
condition:

VA € CNF.if g C' I(Ly.)
then g C" I(Ly,) or ¢ " 1(Lpom)

Setting A4 = [(Lp) M I(Lgom) allows us to conclude that the robustness condition,
I(Lpe) M I(Lprom) E' I(Leo)

is true because the right side of the disjunction must be false by the greatest upper bound property.
Completeness: Now we show that the robust endorsement check implies the robust endorsement
condition. We take as suppositions the robust endorsement check and the antecedent of the robust
endorsement condition:

1(Lpe) T T(Lrom) ©F T(Lso)
VA € CNF, A 7" (L) and A T 1(Lpy,)

The proof is by contradiction.

AT (L) contradiction supposition
AT I(Lye) and A " I(Lpom) =
AT T(Lpe) M T(Lfrom) greatest lower bound
AT (L) transitivity
Which contradicts the antecedent of the robustness condition. O

114

Clio Definitions and Proofs

15

Cai REMAINING DEFINITIONS

C.zx SECURITY LATTICE ORDERINGS AND OPERATORS

We use three lattices (Confidentiality, Integrity, and Availability) whose domains (named C, I, and
A) are formulas of principals in conjuctive normal form. We define an information flow ordering =
(read as “can flow to”). We give the definitions of each below, where =, A, V are the usual classical
logical connectives:

CONFIDENTIALITY

CCCC <<= C=C
CCCC « CCCCandC#C
CUcC < CcnC
Cn°C < cvcC

Lo = True T ¢ = False

INTEGRITY

IC] «—= =T
ICIT < IC andI# T
I < IVI
I < INT
1y = False T;= True

AVAILABILITY

ACA 4 — 4= A4
ACA A < ACA A and A+ A
A 4 — Av A
AV A — ANA
1 4 = False T4 = True
We define the security lattice of DC labels as a product lattice of the three individual lattices to
form a security lattice whose domain is a triple of principal formulas (/ = (C, I, 4)) and whose

ordering is based on safe information flows. We also define a trust ordering < (read as “at least as
trustworthy as”):

16

YC(C, I, A) <= CC¢CandIC ' I'and 4 C4 4
(CI,AC(C, I A) — CcC¢CorlC!TorAC4 4
<{(C,I,4) < CC¢Candl' C'Iand 4/ C4 4
U(C, I, A) < (CL°C, I, A4 4")
(CLANC T, A) < (Cn°C,IT"TI, AT 4")
L= (lc, Ly, Ly) T=(Tc, Tr, T4

For convenience of avoiding pattern matching over the components of a label when needing to
inspect an individual component, we define the following projection functions:

C((C,1, 4))
I((C, 1, 4))
A((C, 1, 4))

C
1
A

1y

Ciz

CRYPTOGRAPHY BACKGROUND DEFINITIONS

* Distribution Ensemble: An ensemble of probability distributions is a sequence

{X, }nen of probability distributions.

* Negligible Function: A negligible function is a function f{lx) : N — IR such that for

every positive integer ¢ € Z™ there exists an integer N such that for all x > N:

Mx)’ < ;

+ Computationally Indistinguishable: Let { X, }, and { ¥, }, be distribution ensem-

bles. Then we say that they are computationally indistinguishable ~ if for any non-uniform
PPT A the following function is negligible in 7:

[PrlA() = 1] % X,] = PrlA(y) = 1] y < 1|

* Hybrid Argument: Let X, ..., X}, be a sequence of probability distributions, where m

is polynomial in 7. Suppose there exists a distinguisher D that distinguishes X; and X, with
probability €. Then there exists 7 € [1,m — 1] such that D distinguishes X; and X;, with
probability ~. (Proof uses Triangle Inequality)

* Cryptosystem: We consider a asymmetric encryption system and signature scheme I =

(Gen, Enc, Dec, Sign, Verify) such that Gen : 1”7 — ({o,1}", {0, 1}") representing the public
key and private key to use in the assymetric cryptographic functions.

* Correctness of Cryptosystem For correctness of our encryption system, we require

thatif p € {o,1}* and (pk, sk) <— Gen(1") and ¢ = Enc(pk, p) then p = Dec(sk, c).

For correctness of our signature scheme, we require thatifp € {o,1}* and (pk,sk) <
Gen(1") and s = Sign(sk, p) then 1 = Verify(pk, s).

To simplify the notation while mainting easy-to-prove security properties, we require that
the encryption and signature functions operate on independent parts of the key; that is, they
internally use a key derivation function (e.g., encryption uses the first half, and signing uses

the second half).

* Security of Cryptosystem: For our encryption functions, we assume the cryptosys-

tem is CPA secure, defined as follows [64]. Let the random variable IND,, (A, 7) denote the

118

output of the experiment, where A is a non-uniform p.p.t., 7 € N, b € {o,1}:

INDy (A, n) = (pk, sk) < Gen(1");
Mo, My, A, <— A(pk) s.t. |mo| = |myl;
¢ < Enc(pk, mp);
Output A, (c)

Then we say that I is CPA (Chosen-Plaintext Attack) secure if for all non-uniform p.p.t. A:

{ IND, (A, 7) } ~ { IND, (A, 7) }

n
Note that we consider the cryptographic functions themselves to be public.

For security of the signature scheme, we assume I1 is secure against existential forgery.

* Indistinguishability Corrollary: The CPA definition may be difficult to understand
to some as it is phrased in the form of a game. An alternative definition of security (thatis a
fairly direct consequence of CPA security) is: For all po, py, if [po| = |py| then,

{ Enc(pk, po) | (pk, sk) < Gen(1") } ~ { Enc(pk, p.) | (pk, sk) < Gen(1") }

Informally, the results of encrypting of equal-length plaintexts are computationally indistin-

n

guishable.

* Digital Signature Forgery: We require our digital signature scheme to be secure
against existential forgery under a Chosen-Message Artack, where the adversary is a non-unfiorm

ppt in the size of the key [32]:

— Existential Foregery: The adversary succeeds in forging the signature of one message,
not necessarily of his choice.

— Chosen-Message Attack: The adversary is allowed to ask the signer to sign a number of
messages of the adversary’s choice. The choice of these messages may depend on pre-
viously obtained signatures. For example, one may think of a notary public who signs
documents on demand.

19

C.3 LIO CoMPLETE SYNTAX AND TYPING RULES

Ground Value: v = true|false| () | /| (v, 2)
Value: vi= v|(v,0) | x| Met| M) <o l>
Term: tu= v|(s,2) | rr|fixt|if rthen zelse ¢
|aUsL 6N |6 C g
|returnz|z>=1¢
| label 7 £ | labelOf 7 | unlabel ¢
| getLabel | getClearance | lowerClearance ¢
| toLabeled 7| }{' ¢}
Ground Type: T ::= Bool | () | Label | (7, T)
Type: 7= 1|(7,7)| T — 7|LIOT |Labeled T

120

BOOL PAIR

b € {true, false} UNIT LABEL I'kF4:m7 kg7,
T'F & : Bool T'0O:0 I' -/ : Label I'F(4,8): (1, 72)
LABELED VAR ABSTRACTION APP
'tov:7 I(x)="71 Fx—7n]kg:1 T'ky:im— 7 I'ke:m,
I'F <v:l> : Labeled 7 I'kx:7 't — 1 I'tsoe,:m
FIX LIO IF
Fbt:(n—om) —n I'kFe:r I'+ # : Bool I'keg:r I'kg:r
I'kfxe:mn— 1, I'-#4°:uor ' ifnthent,elsety : T
LaBerOpr L
®c{MU,C} TFg:label Tt Label GETLABEL
I'F#®t, : Label I' I getLabel : Label
C LOWERCLEARANCE LABELOF
GETLLEARANCE I'F #: Label I'F #: Labeled 7
I" I getClearance : Label I'" F lowerClearance ¢ : LIO () I' - labelOf ¢ : Label
RETURN BIND LABEL
I'ker:7 I'Fyg:LOT I'ks:7— LIOT, I' F ¢ : Label I'be:7
I'Freturnz: LIOT I'bg>=1t:LIOT, I' b label ¢ ¢, : Labeled T
UNLABEL TOLABELED RESET
'+ z: Labeled T I'F # : Label I'kg:LIOT I'ks:LOT
I' - unlabel £: LIO T T" I toLabeled ¢ £, : Labeled T T+ 5‘{12 t} : Labeled T
3
STORE FETCH
L4 :7 'z, : Labeled T | R I'F 1z, : Labeled T
I' - storet £, : LIO() I' - fetch; f; 2, : LIO (Labeled T)

I21

C...4 LIO REMAINING STEP RULES

The program stateis ¢ = (lur, lir | 7) where Ly, is the current label, [y, is the current clearance.
. . . « . .
Computation is modeled as a small-step semantics c — ¢/. We use labels « to represent interaction

with the store.

E::= []|Et|if Ethenrelset| E = t|label E¢
|EUf|IUE|ENt|IUE|ECt|ICE
| label v E | labelOf E | unlabel E
| lowerClearance E | toLabeled E | {{' E'}
| store E ¢ | store v E | fetch; Et|fetch, v E

122

APP

<lcur7 lclr | ()\x'tl) f2> — <lcura lclr | [tz/x] t1>

FIX

Uoars lts | fix (Ne0)) — (loars Lts | [fix (\ot) /o 2)

IFTRUE

(Leur, Lr | if true then 7, else 1) — (Lur, Lir |)

GETLABEL

(lear, L | getLabel) — (ler, Lir | return Loyr)

IFFALSE

(Leur, Lr | if false then 1, else ;) — (Leur, lar | 23)

GETCLEARANCE

(leur, Lar | getClearance) — (leyr, Lir | return Ly;)

LOWERCLEARANCE LaBELOP
e C°h LTIy ®e{MuU,C}t o=4®
(lear, L | lowerClearance i) — (Lur, & | return ()) (leurs et | bk ® L) — (leur, L | 0)
STEP
<lcurvlclr ‘ t> — <léur’ élr ’ t/>
(leur: lte | E[A]) — (leur: lae | EL7])

Where sty is the store adversary level.

123

C..s CoMmPLETE Low EQUIVALENCE RELATION

Terms:
EI :gstare gz lfyl = QZ
< h> =le <0, k> where
_ . c
v =10, if C(ZI) C C(Estore)

and 1(4) EF T(srore)
and A(4) °4 A(lstore)
typeOf v, = typeOf v, otherwise

o e (k) i 1 =ty da0d 5, =g, 4

Lb =ty 40 if & =4, nandt, =¢,,, 1,

fix ¢ =t fxt ifr=y,, 7

ifrthentelset; =y, iffthent,elses, ify =y, fands, =y, f,andt; =y, 2
return ¢ =t,,. return? ifr=y,, 7

h>=1, e 4 >=1, if & =, tandt, =, 1,

label # 2, =l labelZZ, ift, =, thandt, =, 2,

labelOf =y,,. labelOf? ifr=y,,

unlabel ¢ =4, unlabel? ifr=y,, 7

getLabel =l Setlabel

getClearance =t 8etClearance

lowerClearance # =y, lowerClearance / ifr=y, 7

toLabeled #; t, =/, tolabeled? ?, ift, =, tiandt, =4, 2,

b} =t 5107} ifl, = landl, =, Landr=, ¢
store 4, 1, =(,,. Storelt ift, =, thandt, =, 2,

fetch, £ , =y,,. fetch 27 ift, =, tandt, =4, 2
Configurations:

(leur lair | 2) =ture L Ly |) if t =y, ! and [y = Ly and Iy = 1,
(lears Lae |) e Lurr Ly | 7) if (leur Z Lsore and Ly, Z Cyrore) and (leir Z Cstore

and lf;lr ,z Estore)

CONFIDENTIALITY Low EQUIVALENCE

Define =¢

Z}Tﬂr
and availability parts of the label are ignored.

_to be the low equivalence relation with respect to only confidentiality. The integrity

124

_C : _
b " Aitore =2 If:yl =4
<> :ZM <w,:h> where
— : C
=10 if C(ZI) C (C(gstore)
typeOf v, = typeOf v, otherwise
C ;g - c /
(vl? Uz) :Zstore (UU vz) If Uy :Exmre Z)I and U, :Z:mre 1/2
_C : _C _
Ll " Lstore tﬁ ij lf L " Lstore Z/I and L Lstore t;
Configurations:
c o - c 4 4
<[cur7 lclr ’ t> :&m < cur? lclr | ZI > ifr = Litore t/ and lcur = Zcur and lclr = lclr

<lcurv Lar ’ 7) :Z,m («/:un élr | t/> it C(feur) ZC C(store) and(C(léur) ZC (C(gstore)
and C(Lir) Z€ Clstore) and £y, Z€ C(Lstore)

125

C.i1.6 IDEAL Crio COMPLETE SYNTAX AND SEMANTICS

The ideal Clio state is (¢, o) where c s the LIO configuration and o isa mappingo : v — <v: b,
where L represents a corrupted entry.

INTERNAL-STEP
c— ¢

{c,a) ~ (d,0)

STORE
put <v:lh> at v, , ’
c——— ¢ o =oly, — <v:lp]
(e,0) ~ (', 0
FETCH-EXISTS
got , w:lp aty,
c——— 2/ w:l> =0(y,)

(e,0) ~ (d,0)

FETCH-MISSING
nothing-at v
c—25 a(yk) =1

(e,0) ~ (d,0)

Ideal interactions / are given by the following syntax:

~|

n= I 1|1

I ::= skip= A\o.o

| put<v:l>atd = Ao. o[t/ = <v:l>] st I(Lgere) EL (L)
| corrupty,,...v, = Ao.ofv, — L;...v, — L]

The low-step relation ~y from ideal Clio configurations to Clio configurations using adversary
interaction /.

Low-STEP B
(¢,1(a)) ~ (¢, 0")
PC(C> C e:tore PC(C/) C Estore
(oo D) ~ (&)

Low-to-HicH-TO-LOW-STEP

(¢,1(0)) ~ (e, 00)
(€0, To) ~ oo~ (g, 0j)
vo§i<j- PC(Q) z E:tore PC(C]) E g:tore

<<Cv U>7]) N <C]a Uj>

126

C..7 COMPLETE DEFINITIONS FOR LABELED VALUE SERIALIZATION
* initialize_ckp (0, C) = (fetch_ckp (o, C), skip) if fetch_ckp (o, C) defined

* initialize_ckp (0, C) = (fetch_ckp(R(c), C), R) if fetch_ckp (o, C) undefined and R =
create_ckp (o, C)

* create_ckp (0, p; V ... V pn) = store (py V ... V p;i V ... V py) (pk, my, s) where
(pk, sk) < Gen(1")
Mo — 0
for i from 1 to n:
(pki, ski) = P(p:)
m; <— Wl,;l[pi — Enc(p/e,-,s/e)]
s < Sign(sk;, (pk, m)) if sk; # L

* fetch_ckp (0, pc V ... V pi V ... V pu) = (pk, sk) where
(pk,m,s) = o(pyV ... Vpi V...V pp)
(pki, ski) = P(pi) where i chosen s.t. sk; # L
sk = Dec(sk;, m(p;))
Verify(pk;, (pk, m), s) = 1for some pk; in the category.

* Encp (06, (A . ACGIA o A Cyyli),06) = (Ry - ... - Ry, vy) where
for i from1to n:
((pki, ski), R;) < initialize_ckp (0;—y, C;)
o; = Ri(oi—y)
v; < Enc(pki, viy)

* Signp (0o, (L, GA .. NCy),0) = (Ry ... s Ryy sy, -.vy 5,) where
for i from 1 to n:
((pki, ski), R;) < initialize_ckp (0;—y, C;)
o; = Ri(0i—y)
s; — Sign(sk;, v)

* Decp(0, (G A ... A Cpy ki), v,) = v, where
forifrom nto1:
(pki, ski) = fetch_ckp (o, C;)
vi—; = Dec(sk;, v;)

* Verifyp (0, (I, G N . A Cy)y 0, 851, vy 5p) = 1if
forifrom ntor:
(pki, ski) = fetch_ckp (o, C;)
1 = Verify(pki, v, 5;)

7

Similar to the category key meta-functions, we also annotate the results of the meta-functions
with the interactions made on the store so that we can track what actions are being taken on the
crypto store.

With these cryptographic functions operating on labels, we are now ready to describe the meta-
functions which convert a labeled value to a bit string and vice-versa.

- serializep (0, <v:b>) = {(R, - Ry, <s:b5) | (R, b) < Encp(Ri(0), 1, (0,51, - 5n));
(R, 51500y 5n) < Signp(0, L, 0)[}

* deserializep (o, <s: >, 7) = <v:l> if Verifyp (0, L, v, 51, .., 50) = 1
and Decp (o, 1, b) = (v, s, ..., 5,) and typeOf v = T

We use the convenience function pub(P) to represent the projection of the keystore that only
contains the public key parts of the keystores, and no private keys.

128

C..8 REAL Crio COMPLETE SYNTAX AND SEMANTICS

Keystores: P : p— (b,b))

Bitstrings: s € {o,1}"
Stores: o (v— <s:by) U (C— cky)
Versions: V. v—n
Interactions: R = R - R| R
R ::= skip= \o.o

| putckat C= A\o.o[C+> ck]
| put <s:l>aty, = A\o. oy, — <s:b]
Strategies: S : R — R
Category Keys: ck := (b, esk, S)
Encrypted Keys: esk : p— s

keystore Label Functions

min(P) = pV..VpV..Vp,forallp; € dom(P)

max(P) = pA..Api ... Apyforall p; € dom(P)
and sk; # L where P(p;) = (pki, ski)

Start(P) = (min(P), max(P), max(P)))

Clr(P) = (max(P), min(P), min(P))

)
authorityOf(P) = (max(P), max(P), max(P))

Interaction: R = skip = Mo.o
| put <s:f> at v, = Ao. oy, — <s:b>]
| put ckat C = Ao. o[C — ck]

The interaction concatenation operation R - R sequences interactions. We use the notation
R =R - ... - Rtodenote asequence of interactions.
The real Clio state is (¢, R, V) where ¢ is the LIO configuration, o is the store.

129

INTERNAL-STEP

STORE

FeTcH-ExI1sTS

FeTcH-MISSING

FeTcH-REPLAY

c—> c/
(e, R, V) ~, (R, V)

put <v:l> at v, /
c——— ¢

n = increment(V(y,)) V' =V]y, — 7]

R = {| put <s:f>atw, - R - R | R+ R;

(R, <s:L>) + serializep (0, <(v, v, 1) : b>) [}

<C’ :[R’ V> WI <C,7]R/7 V,>

got w:lp aty, ,
¢ —7>7€ n % V(Ek)
(0.p) €{ RO|R<R |} p>o

<(v, v,) : > = deserializep(o, 0 (v,),)
(6, R, V) ~p (¢, R, V)

nothing-at v, ’
c
(0.p) € ROR<R p>o
deserializep (o, 0(y,), 7) undefined
<Ca]Rv V> WP <Cv]R7 V>

thing-at
0 g Fgorn< V()

(.)€l RO)|R<R [} p>o
(v, v, n): k> = deserializep(a,0(v,), 7)
(¢, R, V) ~, (¢, R, V)

The low-step relation Ny from real Clio configurations and adversary interactions to Clio config-
urations with probability p.

130

Low-STEP - o -
R ={ Ry - R|R4+ Ry R+ R |}
(¢, R', V) ~p (d,R", V')
PC(C) C C(ﬁ;mre) PC(C/) C (C(estore)

((¢, R, V),Ry) Ny <c’,]R”,V/>
Low-to-HicH-TO-LOowW-STEP B o B
R ={ Ry R|R4+Ry; R« R |}
<C7]R/7 V> “"’po <CO7]R07 V))
(€, Ro, Vo) My e <cj,]Rj,V]->

vo§i<j- PC(CI) Z gstore PC(C]) E estore]7 = Hogigjpi

(<67 R, V>7]RA) Ny <C],]R]‘, V]>

The step function encodes the distribution of real Clio states after taking j low steps:

Note that, we consider only configurations and strategies that can and always will take at least ;
low steps for all strategies. That is, there is no possibility for a trace to fail to make a low step before
j low steps. As a result, the step function will always produce a distribution (i.e., their probabilities
will add up to 1). The program should be written in such a way that it is defensively written to en-

sure that it can take at least j low steps.

131

C.2 COMPLETE THEOREMS AND PROOFS

C.2.1 CrL10 INTERACTION INDISTINGUISHABILITY LEMMAS

Lemma 5 (Round 1: Multi-Message Security). For all Mgy oy My) and all principals P
if |mf| = |mi| for all1 < i < k, and 11 is CPA Secure, then

n

k3,

{Enc(pkt, ml), ..., Enc(pkl,mf), ..., Enc(pk¥,mk) | P < Gen(p,1"); (pki,ski) € mg(P); 1 < i < k}

{Enc(pk’;,m‘z), wey Enc(pkl,mi), ..., Enc(pkf,m’j) | P+ Gen(p,1"); (pk,sk) € rng(P); 1

IN
IN

i

Proof. We perform a proof by contradiction: we assume the consequent does not hold and con-
struct a counter-example to the CPA-security of II.

The lengths of the sequences of encryptions are equal by setup. The sequences are also polyno-
mial in 7 as each low step produces a polynomial number of messages and the number of low steps
is polynomial in 7 as & is fixed.

This setup is equivalent to the multi-message CPA security problem. We use the same general
technique to show that single-message CPA security. gives rise to multi-message CPA security by
using a hybrid argument.

We can define a hybrid sequence of messages

— Lo i i Lk
H; = {ml, ey mlymy L omly)

such that at the point 7 we switch from using the sequence of messages from the first run to using
the sequence of messages from the second run. By the hybrid argument, there must exist an 7 that

distinguishes H; and H;, with non-negligible probability in 7. We will fix on that . So we can now
construct the following CPA adversary:

1. By assumption of our proof by contradiction, there exists a Round 1 adversary that can distin-
guish H; and H;y, for a particular 7 and particular mi{o’l}, ey mio’l}, and call it Ag,.
2. In our construction, we generate a new keystore P as defined in the lemma statement and

i+1

give the plaintext messages 725" and !

to the CPA game and it will then provide us back a
ciphertext ¢ of one of the messages.

3. We create a new sequence of encrypted messages in the following way:
H= {Enc(p/ei., mb); ...; Enc(pkl, m)); ¢; Enc(pkit? mit?); ... Enc(p/e}:7 m*) |pk"1,2} +— Gen(1");1 < o < k}}

In the case where the CPA game chose message 72" we have that # = H; and in the other
case where 7/ we have that H = Hj,. Since Ag, can distinguish exactly this case and that

132

the choice of message encrypted determines which sequence of messages was used, we can as a
result distinguish which plain-text message was chosen by the CPA game with non-negligible

probeability.

As a result of constructing a CPA adversary that can distinguish plain-text messages with non-
negligible probability, we have shown a contradiction, and can conclude that the above sequences of
encryptions is indistinguishable.

O]

133

Definition 16 (Low Equivalent Interactions). Let Lp(R) to be a fixed function (i.e., it does
not change its behavior based on its inputs) from interactions to interactions such that the result
contains the original sequence of interactions with low interactions added at statically fixed locations
in the sequence. Let the resulting sequences of interactions be called low equivalent interactions.

A low interaction is a skip command or a put <b: ;> at v, such that
C(k) C€ C(authorityOf (P)) and <(z, v, 1) : h> = deserializep (R, <b:L>) orput p’ at C.

Lemma 6 (Round 2: Secret and Low Equivalent Interactions). For all keystores P, and
Ly ..y by, such that C(l;) £€ C(authorityOf(P)), and for all My Ty 4y and all principals p, if
\mi| = |m]| for all1 < i < k and 11 is CPA Secure, then

{ Lp, (put B:F>at - ... - put <bE:Fsat yk> | P« Gen(1"); (pk',sk') € rmg(P); bl « Enc(pki, mi); 1 <i<k},

~
~

{Lp, <put BLiEsatdh - ... - put <bE: > at gk) | P« Gen(1"); (pk',sk') € mg(P); b, < Enc(pk', mi); 1<i<k},

Proof. We perform a reduction to the Round 1 adversary. That s, if there exists a Round 2 adversary
Ag, then there also exists a Round 1 adversary, which will provide a contradiction.

We construct our adversary as follows. Given a sequence of secret encryptions (from Round 1),
we can construct the input to the L function by constructing a constant set of labels /; to /, arbitrar-
ily so long as they flow to C(authorityOf(P)), which is a static property and also arbitrary input
keys. We can then also construct the entry keys ¢/ in the same static fashion. When then just apply
the deterministic Z function and pass that to Ag,.

Since we have shown how to construct a Round 1 adversary from a Round 2 adversary, we have a
contradiction of the Round 1 lemma, so we conclude our proof.

O]

134

Definition 17 (Clio Interactions). Let My oo m’EI 2} be sequences of messages such that

1 i DI %Y
[my| = ||, Further, let Ry, 3, .., R/{I,Z} be sequences of low equivalent interactions (from Defini-
tion 2) whose ciphertexts are based on slices of the underlying message. For example

put (b, {p — Enc(pk,m})}, b;) at C - put Enc(pk, m?) at y,
skip
= putEnc(pk', m}) at v,

B\

=LA

= putEnc(pk”, m*) at o

1

Then we say two sequences of interactions are Clio equivalent < iff they are of the form, with all

but negligible probability,

(R-R .. ®R.x) P« Gen(1"); (pk', sk') € rng(P); bi < Enc(pki, mi); 1 < i < k;

f oo S — AW) R« SR .. B-R); 1< s <js R« S(skip) },
{R, - R....R.-®) P <+ Gen(1"); (pk',sk') € rng(P); b, < Enc(pk’, m’); 1 < i < k;

t 0o S — AW R« SR, - ... R, -R)); 1 < s <j; R + S(skip) },

Lemma 7 (Round 3: Clio Interactions Indistinguishability). For all families of distribu-
tions Ry and R, if R, < R, and 11 is CPA secure, then R, = R,.

Proof. Similar to the previous rounds, we will reduce this problem to the Round 2 Secret and Low
Equivalent Interactions indistinguishability problem. If there exists a Round 3 adversary Ag; then
there also exists a Round 2 adversary, which will provide a contradiction.

We construct our adversary as follows. Given a sequence of low equivalent interactions (from

Round 2) R, and R,, we subdivide the interactions into sequences of interactions ?{I’Z} ...R {12} We
also add the categories in storing category keys arbitrarily in a static way and also add the category
key signatures (as it was not in the previous round) by just performing the signing process according
to the initialize_ckpfunction.

For the strategy interactions, we just perform the draws from the strategy starting from the end of
the sequences of interactions, working backwards and place them in their corresponding positions,
ie., R« S (ﬁs et R Rforr < 5 < j- We note that, although the interactions may differ

they are indistinguishable. That is because the first sequence of interactions]7{1’2} is a sub-problem
of the Round 2 sequences of interactions. As a result, since the two sequences of interactions are
computationally indistinguishable, then their corresponding draws from the strategy are also com-
putationally indistinguishable.

As aresult, we can then pass the final sequence of interactions to Ag, to distinguish the distribu-
tions. Since we have shown how to construct a Round 2 adversary from a Round 3 adversary, we
have a contradiction of the Round 2 lemma, so we conclude our proof.

135

C.2.2 Cr1O PRESERVATION OF Low EQUIVALENCE

Lemma 8 (Preservation of Low Equivalence). For all keystores P, where Usore =
authorityOf (P,), LIO configurations ¢, c,, strategies S, and principals p, and j € N, if 11 is CPA
Secure and ¢, :Ztm ¢, then

Pr <C{7]R17 ‘/I> #Zme <L/27]R27 Vz> or V; 7é v,

P+ Gen(p,1"); Pi=PoWP; (I, R;, V) ¢ step]' (,S,));
P’ < Gen(p,1"); P, = Po WP'; (¢, R,, V,) stepZ:J”(cz,S,j)}

is negligible in n, and
LR
{E P Gen(p,1"); P = PoWP'; (¢, R,, Vi) ¢ stepl. (., S,); Ry R, }

Proof. We will prove this lemma in two steps: first by showing that the invariant is preserved across

P Gen(p,1"); P = PowP'; (<, Ry, Vi) « stepl. (c,8,)); R« R, }

n

~

n

*

4
low steps .

Clio steps ~»; and then using that fact, we can show that the invariant is also preserved across Clio

Proof on Step relation ~,: We will perform induction on the derivation of the steps
(which will be finite when used with the low-step rules, i.e., it is well-founded) with the number of
steps being & being 1 less than the total number of (possibly high) steps in the context of a single low
step.

Our inductive hypothesis will be if (¢, skip, V) :Zm (¢}, skip, V,) and II is CPA Secure, then,
Pr {<47 R,, V1> #g <C/27 R,, V2> or V, 7é V.,)

P < Gen(p, I”S)M;WPI = Po WP; (a,skip, Xo) ~p, ... ~p, (0, Ry, Vy);
P’ Gen(p,1"); P, = Po & P'; (e, skip, Lo) ~pr ... =, (/Z,]RZ,VQ}
is negligible in 7, and
{®
(x

. We must show as our inductive step that if our inductive hypothesis is true, that the following is

P« Gen(p,1"); P =Po W P’; (c, skip, o) ~p, ...

1

7 p <‘{7]R17VI>§ ﬁl +— R, }

n
~
~

P Gen(p,1"); P = PolP’; (e, skib, o)yt oo oy, (R, Vi) Ry ¢ R, }

n

true:

Pr[(, R, V) A6, (&R VY |
P < Gen(p,1"); P = Po W P; (a,skip, o) ~p, ..
(¢ R}, V)
P’ < Gen(p,1"); P, = Po WP’ (e, skip, Xo) ~pr ... >y, (¢, R,, V,) i
(@, R, V)|

ka <47]R17V1> WPker

is negligible in 7, and
{%
(R, Vi) B« R, }
7/ ~ . B
{ R, | P + Gen(p,1"); P = Po W P'; (c,, skip, L) ML e g (,,R,,V,) v
(&R, Vi) R, < R, |

P’ Gen(p,1"); P = Po W P'; (G, skip, To) ~p, ...

1

e (¢, Ry, Vy) 7 Pletr

n

~

n

The base case # = o is direct as the initial interactions are a special case of Clio interactions (i.e.,
skip = skip) and X, = X, and we already know by supposition that ¢, zgm C,-

For the inductive case, we now consider the derivation rule used for the £ + r’th step and show
that it preserves the inductive hypothesis, assuming it for the £’th step.

We note that the single steps may take differing numbers of steps (i.e., £ and £’). Due to the
Low-To-HiGH-To-LoWw step rule, though, these differences only occur when o, is high. As a re-
sult, the only invariant we need to preserve is confidentiality-only low equivalence between config-
urations as the high steps do not change the versions, stores, or interactions. We can appeal to the
preservation of low equivalence of LIO proved by Stefan et al. [77] to conclude the preservation
confidentiality-only low equivalence of the standard (i.e., non-store and non-fetch) LIO internal
steps. We now consider the low steps that affect the non-standard parts of LIO (i.e., the store and
fetch commands).

We also note that since there are only a polynomial number of steps that the resulting sequences
of configurations from single steps that do not preserve low equivalent in each step will still together
be negligible. As a result, we only need to show that the probability of each step not preserving low
equivalence is negligible in 7. To that end, we will ignore the traces of steps with negligible probabili-
ties that are not low equivalent.

+ Case Fetch (FETCH-EXISTS, FETCH-MISSING, or FETCH-REPLAY):

In this case, both configurations have a term with an evaluation context hole that is at a fetch
command. That s, they are both attempting to fetch an entry from the store with key v,
and yi Due to low equivalence they are both fetching the same key, v, = 22- As aresult,
they must each be using one of the following rules: FETCH-Ex1sTS, FETCH-MISSING, or
FETCH-REPLAY.

137

We know by our inductive hypothesis that the distributions of interactions are Clio equiva-
lent. Because the distributions are equal, we can consider steps where the draws are equivalent
for values in the erased distributions. We now consider now each case that ¢ transitions with.

— Case Fercu-Exists and C(4) E€ C({gre): In this case the labeled value will be
deserialized the same way and the same labeled value will be fetched. Since the labeled
value is readable by the adversary it must be syntactically equivalent with all but negligi-
ble probability, otherwise the interactions would be distinguishable which would be a
counter-example to Lemma 7. As a result, low equivalence will be preserved and both
configurations will transition in the same way with all but negligible probability.

— Case FercH-Exists and C(4) [Z€ C(4spre): In general the value fetched from the
store will vary, or it may be the case that only some of the time a value can even be dese-
rialized. In these cases, the configurations may transition using this rule and other inter-
actions from the distribution may result in it using another rule. However, if ¢, transi-
tions using another fetch rule (FETCH-MI1SSING or FETCH-REPLAY), the default value
will be used. Since secret values can differ and still be low equivalent, the resulting two
configurations will still be low equivalent. In each of these cases, no new interactions
are produced so the resulting distributions of interactions are still valid Clio interactions
by our inductive hypothesis (as they did not change). As a result, low equivalence and
the valid interactions invariant is preserved.

— Case FETCH-MIisSING or FETCH-REPLAY: In these cases, the default labeled value
will be used, which by our inductive hypothesis is already low equivalent (due to the
configurations being low equivalent). The other configurations will transition in a sym-
metric way described for the FETCH-EXISTS rule.

+ Case STORE:

In this case the distribution of stores and interactions will change so we must show that they
. . . - | ==/ -/ | ==/
remain equivalent. That is, we must show that { R | R_R]}, < { R, | R, + R}} where

]RI = { put <s; : > aty, - ﬁl : Rx ﬁl — Ry
(R, <51 L>) < serializep (o, <(v, v, 1) 1 hp>) }

R, = { put <s,:L> aty, - R, - R, ‘ R, + R,;

2

(R, <s,:b>) « serializep (0, <(v, v, 1,) 1 b>) }

We first note that the entry keys are the same from low equivalence. The versions are equal
from Clio low equivalence, i.e., 7, = 7,. We also note that the distributions of interactions
are valid Clio interactions from our inductive hypothesis. For readable labeled values, we can
conclude that they are syntactically equivalent values from low equivalence. For non-readable

138

values, the types of the secret values will be the same due to low equivalence (and so the serial-
ized plaintext message will have the same length). As a result the put <by, ;) : 4> at v, will be a
valid extension of valid Clio interactions.

We next consider the creation of category keys (i.e., R, and R,). The initialization of category
keys will behave the same way as described for fetching a labeled value: it will either create
new keys (if they were corrupted or not there), or skip. It will do this in the same way as the re-
sulting interactions are indistinguishable. For the contents of the category keys, we can divide
the parts of the category into deterministic parts (i.e., from Lemma 6) and secret encryptions.

With these considerations, we conclude that with all but negligible probability the resulting
interactions will be valid Clio interactions.

Finally, for the versions mappings, we note that they are both updated equivalently (i.e., incre-
mented by the version in the mapping) and the versions mappings originally were equal, so
the resulting versions are equal.

With all cases of the reduction shown to satisty the proof obligation, we can conclude the induc-
tive hypothesis is true for all steps used in the context of a single low step. We next show the low
equivalence invariant on the low step relation.

Proof on Low-step relation m: by induction on the number of low steps . Our induc-
tive hypothesis will match our lemma. For all keystores P, where £ =
authorityOf (P,), LIO configurations ¢, ¢,, strategies S, and principals p, andj € N, if ITis CPA
Secure and ¢, :gm ¢,, then
Pr |:<47 R,, V1> #ZIW <C/27 R,, V2> or 'V, 7é V.,
P« Gen(p,1"); Pr = Po WP; (g, Ry, Vi) < step,’ (a,S,));
P’ < Gen(p,1"); P, =PoWP'; (¢, R,, V,) « stepZ;,e(fz,&j)}

is negligible in 7, and
{®
{x.

P’ « Gen(p,1"); P =Po W P’; (d,R,, V,) < step), (a,S,)); R+ R, }

store

P+ Gen(p,1"); P = Po W P'; (), R,, V,) < step] (6,,S,/); R, + R, }

n

* Base Case: j = 1: Thatis, we will prove the following:
Pr[<4,1RI,VI> £E (4R, V,)orV, £V,
P« Gen(p,1"); Pr=PoWP; (¢, Ry, V) StepZ;W(CI,S, 1);

P’ Gen(p,1"); P, = Po WP; (¢,,R,, V,) stepZ;re(cz,S,I)

139

is negligible in 7, and

(v
(v

We must show (¢, R;, V) :ZW (¢,,R,, V,) or V, # V,. There are two cases we must con-
sider in the low step relation, the Low-STEP rule and the Low-To-HiGH-TO-LOW-STEP rule.
In the Low-STEP, we must show that the inductive hypothesis holds after a single Clio step
~p, and for the Low-To-H1GH-TO-Low-STEP rule must hold for many (finite) Clio steps
~~5. Note that the Low-STEP rule is a special case of the Low-T0-HIGH-T0-LOW-STEP rule
so we only consider the more general case of preserving the invariant across many steps. To
show this, we appeal to the previous proof made to show that the invariant is preserved across

Clio steps.

n

P’ < Gen(p,1"); P =PoWP'; (<, Ry, Vy) stepZm(cl,S,I); R + R, }

P’ Gen(p,1"); P =P WP; (c,,R,, V,) + stepZm(cz,S, 1); R, < R, }

n

Unlike the single step relation, this includes a strategy interaction on the distribution of
stores. Since both interactions receive the indistinguishable distributions of interactions
(from Lemma 7 and the inductive hypothesis) so the resulting distributions from the strat-
egy will also be computationally indistinguishable. That is because if they were not, then the
strategy itself could be used as a counter-example for Lemma 7. In sum, the resulting strategy
invocation results in a valid sequence of Clio interactions.

From the previous proof on the single-step relation, we can conclude that
(d,Ry, V) =5 (d,R,,V,). Asa result, we satisfy the inductive hypothesis.

- E:tore

* Inductive Case; = k + 1: That is, we will prove the following:

Pr <C{7 R,, VI> #Zmre <Lj27 R,, Vz> or V, ?é Vv,
P <+ Gen(p,1"); P, = Po W P; (, Ry, Vi) ¢ step)’ (a,S, k+1);
P’ + Gen(p,1"); P, = Po W P'; ({,R,, V,) step)* (c,, S, k+1)}

is negligible in 7, and

LR
&
We now must show that, for any low equivalent configurations that the resulting single step
will remain low equivalent. We can use the same reasoning from the base case to show that

P’ Gen(p,1"); P =P WP'; (c,Ry, Vy) stepZm(cI,S, k+1); R+ R, }

n

~

P’ < Gen(p,1"); P =PoWP; (¢,,R,,V,) < stepzm(cz,s, k+1); R, < R, }

n

140

the adversary interaction preserves equivalence on distributions of stores. After this adversary

interaction, we can invoke the single-step lemma result here to conclude that ¢/ dl.

Lstore

With the single low step relation handled we now must consider the distribution of distributions
of interactions from the step function. For example, it may be the case that a particular distribu-
tion of interactions generated from one trace of low steps may be much more likely than another
distribution of interactions. However, we can use the preservation of low equivalence to reason
about the probabilities of corresponding low equivalent distributions of interactions. We consider
the distribution formed from the step function after 1 low step as a running example to make our
arguments concrete, shown graphically in the main matter in Section s.4.1.

From our inductive hypothesis we know that corresponding low equivalent configurations have
indistinguishable distributions of interactions. We now must consider the relationship between the
probabilities that led to the corresponding low equivalent configurations (e.g., from the diagram p,
and p,, and also p] and p)). If they are similar, then the resulting draws from the distributions will be
similar (from low equivalence).

Consider the pairs of low equivalent configurations and the probabilities that led to those con-
figurations (e.g., from the diagram (¢, R;, V) with probability p; and (¢}, R,, V) with proba-
bility p,). Consider the ways the configurations can differ probabilistically (e.g., from the diagram,
how ¢ steps to both] and ¢ and how ¢, steps to both ¢, and /). The low step relation is just the
probability of the trace of single steps leading to the next low Clio configuration. The STORE and
INTERNAL-STEP rules take steps with probability 1 so they will not cause the low step to differ prob-
abilistically.

Indeed, only the fetching rules FETcH-Ex15TS, FETCH-MISSING, and FETCH-REPLAY rules will
cause the configurations to differ probabilistically. In particular they will differ based on the inter-
actions drawn, and as a result differ on how those interactions affect the fetch: if the entry is miss-
ing or not deserializeable (FETCH-MISSING), if the value can be deserialized but the version is old
(FETCH-REPLAY), or if it was successfully deserialized and the version is not old (FETCH-VALID).

Due to our inductive hypothesis we know that the distributions of interactions are valid Clio
interactions and as a result are indistinguishable from Lemma 7. For readable labeled values, the
configurations will step with the same probability in lock-step with all but negligible probability, as
the readable labeled values will be syntactically equivalent (as the distributions of erased stores are
equivalent).

In the case where the label of the labeled value is not readable, the rules used to step may not
be the same as they are the results of encrypted values. For example, in one configuration a labeled
value may be successfully fetched (using FETCH-VALID) but not in the corresponding configuration
(e.g., FETCH-MISSING was used). However, as noted above and by our inductive hypothesis, the
different rules used will all step to a low equivalent configuration. In addition, though, to the config-
urations being low equivalent, it is also the case that the sums of the probabilities of all steps taken
will be equivalent with all but negligible probability. For example, if ¢; steps using FETCH-MIsSING
with probability p;, and FETCH-VALID with probability p,, it is also the case that ¢, will use the same
rules FETCH-MIssING with probability p; and FETcH-VALID with probability p, due to indistin-

141

guishability of the interactions. That is because if it did not, then an adversary could be constructed
to distinguish the interactions based on the proportions of rules used by the Clio semantics. Intu-
itively, the draws of indistinguishable interactions will produce distributions of indistinguishable
steps.

With this reasoning, we conclude that the probabilities of each corresponding single step taking
place will be equal (e.g., in the diagram above, p; = p, and p, = p,). So, the resulting distribution of
distributions over interactions will be still be valid Clio interactions and so the < relation holds (and,
by Lemma 7, they are also indistinguishable as a result).

O

142

C.2.3 INDISTINGUISHABILITY PROOF

Definition 18 (Chosen-Term Attack (CTA) Game). Let the random variable
INDy (P, A, p,j, n) denote the output of the following experiment, where I1 = (Gen, Enc, Dec,
Sign, Verify), A is a non-uniform ppt, n € N, b € {o,1}:

IND(Ps, A, p,j, n) =

P’ < Gen(p,1"); P =P, W P';

1, Vo, 01, Sy Ay <= A(pub(P)) such that v, =j
and + t: Labeled T — LIO T/
and + v, : Labeled T
and + v, : Labeled T
and Uyore = authorityOf (P,);

(e, Ry, V) stepzm((Start(P), Clr(P) | (£vp)),S,));

Ry + Ry; Output A,(Ry)

We say that Clio using 11 is CTA (Chosen-Term Attack) Secure if for all non-uniform ppt A, j €
N, keystores P, and principals p:

Ur

{ INDO('P,A,i),j, n) }n ~ { INDI(PvAj”j» n) }

n

Theorem 19 (Indistinguishability Theorem). If1l if CPA Secure, then Clio using 11 is CTA
Secure.

Proof. Direct result of low equivalence (interactions are valid Clio interactions, i.e., they satisfy the
= relation) and Lemma 7 (indistinguishability of valid Clio interactions).

O]

143

C.2.4 LEVERAGED FORGERY LEMMAS

Lemma 9 (Starting Label is a Floor). For all keystores P and terms t and strategies S and
principals p and j,

Pr[1(PC(c)) ! I(Start(Py))
P’ < Gen(p,1");
P =Py P
(R, V) « stepzore(<5tart(790), Cir(Ps) | 1),S,j) | =0

Proof. We will prove this lemma in two steps: first by showing that the invariant is preserved across
Clio steps w; and then using that fact, we can show that the invariant is also preserved across Clio
low steps M, *. Our invariant will serve as our inductive hypothesis in both cases.

Proof on Step relation ~,: We will perform induction on the derivation of the steps
(which will be finite when used with the low-step rules, i.e., it is well-founded) with the number of
steps being & being 1 less than the total number of (possibly high) steps in the context of a single low
step, and our inductive hypothesis will be if [(PC(c)) =7 I(Start(P,)) and,

Pr[I[(PC(c’)) ! I(Start(P,)))
P’ < Gen(p,1");
P =P, WP
<L', skip, EO> gy e My <L/’R/7V/>i| — 5

then,

PP[H(PC(H’)) ! I(Start(P,)) ‘
P Gen(i), 1");
P =P P,
(615D, £0) ~p, e py (R V) o, (RLVI) =0

The base case k£ = o is trivial as it is true by supposition.

For the inductive case, we now consider the derivation rule used for the £ + r’th step and show
that it preserves the inductive hypothesis, assuming it for the £’th step. We now perform a case analy-
sis on the step used.

+ Case INTERNAL-STEP:

In this derivation we have that:

INTERNAL STEP
d—
<C,’]R? V> WI <C,/7 IR/? VI>

By inspection of each of the LIO rules, the label is manipulated in the following ways:

144

— In UNLABEL, the current label is joined with the level of the labeled value, so the flows
relation between the current label and the starting label is preserved.

— In RESET the label is returned to its original label. However, from the TOLABELED rule,
the label is based on the current label. As a result, since the label is based on a previous
step’s current label, and the inductive hypothesis assumes it was true for that point, then
the label it is reset to is also satisfies the flow relation to the starting label.

— Inall other rules, the current label is not changed, which by supposition satisfies the
flow relation.

Proof on Low-Step relation ~p By induction onj.

* Base Case: j = 1: That s, we will prove the following:

Pr [1(PC(c)) T I(Start(Py))
P’ < Gen(p,1");
P=P.uP: (oR,V) < stepl, ((Start(P),CIr(P) [9),S,1) | =o

There are two cases we must consider in the low step relation, the Low-STEP rule and the
Low-To-HiGH-To-Low-STEP rule. In the Low-STEP, we must show that the inductive hy-

pothesis holds after a single Clio step ~~, and for the Low-To-HiGH-TO-LOW-STEP rule

must hold for many (finite) Clio steps ~~5. Note that the Low-STEP rule is a special case of

the Low-To-H1GH-TO-LOW-STEP rule so we only consider the more general case of preserv-
ing the invariant across many steps. To show this, we appeal to the previous proof made to
show that the invariant is preserved across Clio steps. As a result, we have that:

Pr[H(PC(c’)) ! I(Start(P,)) ‘
P’ < Gen(p,1");
P =P WP
(c,skip, o) ~=p, .o ~p, <£/,]R7V>} =o

From the previous proof on the single-step relation, we can conclude that I[(PC(c)) !
I(Start(P,)). Asaresult, we satisfy the inductive hypothesis.

* Inductive Case: j = k+1: That is, we will prove the following:

Pr[H(PC(c)) CII(Start(Po)) | P’ Gen(p,1");
P=P,WP; (R, V)<« stepZm«Start(P), Clr(P) | 1),S,k+1) | =0

We can expand the step metafunction to be

145

(<L//’]R”, V'>,p p/)

where
((c’, R,V) ,p) IS stepzm(c, S, k);
R’ = S(R);

(¢, R, V),R) ny (",R", V')

The strategy on the stores does not affect the current label. After this adversary interaction, we
can invoke the single-step lemma result here to conclude that I(PC(¢”)) C* I(Start(P,)). As
a result, the inductive hypothesis is true.

With all cases accounted for in the low step relation, and the single-step relation, we can conclude

the proof.

C.2.5 LEVERAGED FORGERY SECURITY PROOF

Definition 20 (Values function). Define the Values function as follows:

Valuesp (put <b:l>aty, - R) = put<b:l>aty, - Values(R) if «(z, 1, 7): 4> = deserializep(R, <b:L>,T)
Valuesp(R - R) = Values(R) otherwise

Theorem 21 (Existential forgery under chosen message attack). For all keystores P,
principals p in principal sets p, and j if 11 is secure against existential forgery under chosen message
attacks, then

for all T(L,) E'T(L) T T(authorityOf (P,)) A p,

Pr[<b:l > € Valuesp(R') and <b: > ¢ Valuesp(R)

‘ P’ Gen({p},1"); P = Po W P';
1, S, A, < A(pub(P));
(c,R, V) < step] ((Start(P),CIr(P)|1),S,7);

R+ R;

?,8" «+ A,(R);

(d,R', V') stepztm((Start(Po), Clr(P) | 7),S.));
R+]R’]

is negligible in n.

Proof. We consider the level required to produce a valid signature during a store operation. The
signature must be valid forap € p. By inspection of the Clio semantics, the only way to a valid
signature would occur in the interaction is during the store operation, which uses the labeled value’s
label, or by the strategy.

According to the store operation, current label must be bounded above by the label of the labeled
value (i.e., lyr T 1). For integrity, this means the current label’s integrity component 7 must be at
least as trustworthy as the principal p.

By the previous lemma, we can conclude that the current integrity label will never be at a level

such that
I ' I(Start(P,))

This means that the level of the Clio computation would need to be at least
I = I(authorityOf (P, & {p > Gen(1")}))
By unpacking the definition of Start(P & {p +— Gen(1")}), this integrity label satisfies the follow-

ing relation

I I(Start(Py))

147

Which we have shown is impossible to reach. As a result, the current label’s integrity level will
never be at a level where it can sign the value using p’s private signing key.

As a result, the only way a high integrity value could be in the challenge store 0’ and not in the
original store o would require the strategy to forge a signature itself without Clio’s assistance. Since
this occurs with only negiglible probability, we have satisfied the proof obligation. O

	Abstract
	Dedication
	Introduction
	Higher-Order Behavioral Contracts for Modern Services
	Introduction
	The Whip Contract Language
	The Whip Runtime, Informally
	Whip Formally
	Correct Blame
	Whip in Practice
	Performance
	Related work
	Conclusion

	Background on LIO and DC Labels
	DC Labels
	LIO

	Restricted Privileges for Downgrading
	Introduction
	Security Definitions
	Enforcement for robust privileges
	Interaction among restricted privileges
	Case studies
	Related Work
	Conclusion

	Cryptographically Secure Information-Flow Control for Key-Value Stores
	Introduction
	Interacting with an Untrusted Store
	Realizing Clio
	Formal Properties
	Clio in Practice
	Related Work
	Conclusion

	Conclusion
	References
	Whip Definitions and Proofs
	Remaining Definitions
	Complete Theorems and Proofs

	Restrictied Privileges Proofs
	Clio Definitions and Proofs
	Remaining Definitions
	Complete Theorems and Proofs

