
It’s My Privilege: Controlling Downgrading
in DC-Labels

Lucas Waye1(B), Pablo Buiras2, Dan King1, Stephen Chong1,
and Alejandro Russo2

1 Harvard University, Cambridge, MA, USA
{lwaye,danking,chong}@seas.harvard.edu

2 Chalmers University of Technology, Gothenburg, Sweden
{buiras,russo}@chalmers.se

Abstract. Disjunction Category Labels (DC-labels) are an expressive
label format used to classify the sensitivity of data in information-flow
control systems. DC-labels use capability-like privileges to downgrade
information. Inappropriate use of privileges can compromise security, but
DC-labels provide no mechanism to ensure appropriate use. We extend
DC-labels with the novel notions of bounded privileges and robust priv-
ileges. Bounded privileges specify and enforce upper and lower bounds
on the labels of data that may be downgraded. Bounded privileges are
simple and intuitive, yet can express a rich set of desirable security poli-
cies. Robust privileges can be used only in downgrading operations that
are robust, i.e., the code exercising privileges cannot be abused to release
or certify more information than intended. Surprisingly, robust down-
grades can be expressed in DC-labels as downgrading operations using
a weakened privilege. We provide sound and complete run-time security
checks to ensure downgrading operations are robust. We illustrate the
applicability of bounded and robust privileges in a case study as well as
by identifying a vulnerability in an existing DC-label-based application.

1 Introduction

Information-flow control (IFC) systems track the flow of information by associ-
ating labels with data. Disjunction Category Labels (DC-labels) are a practical
and expressive label format that can capture the security concerns of principals.
IFC systems and DC-labels can provide strong, expressive, and practical infor-
mation security guarantees, preventing exploitation of, for example, cross-site
scripting and code injection vulnerabilities [9,10,19,23,26].

IFC systems often need to downgrade information: declassification down-
grades confidentiality, and endorsement downgrades integrity. Downgrading of

This work is supported in part by the National Science Foundation under Grants
1054172 and 1421770, DARPA CRASH under contract #N66001-10-2-4088, the
Swedish research agencies VR and STINT, and the Barbro Osher Pro Suecia
foundation.
A.Russo—Work done while visiting Stanford.

c⃝ Springer International Publishing Switzerland 2015
S. Foresti (Ed.): STM 2015, LNCS 9331, pp. 203–219, 2015.
DOI: 10.1007/978-3-319-24858-5 13

204 L. Waye et al.

DC-labels occurs via operations that require unforgeable capability-like tokens
known as privileges. Unfortunately, DC-labels offer no methodology to protect
developers from the discretionary (i.e., unrestricted) exercise of privileges—even
a minor mistake in handling privileges can compromise the whole system’s secu-
rity. For example, we found a one-line vulnerability in an existing DC-label
application written by experts that enabled confidential information to be inap-
propriately released, thus violating the application’s intended security properties.

To address this, we introduce restricted privileges: privileges that are limited
in their ability to declassify and endorse information. By declaratively restricting
the use of privileges, developers can reason about the security properties of the
system, regardless of the code that may possess or use the restricted privileges.
Thus, the developer’s local declaration of restrictions enables the enforcement of
global information security guarantees.

We present two kinds of restricted privileges: bounded privileges and robust
privileges. A bounded privilege imposes upper and lower bounds on the DC-labels
of data that is declassified or endorsed using that privilege. Robust privileges
avoid the accidental or malicious use of privileges to declassify or endorse more
information than intended, achieving a property known as robustness [16,25].

Bounded Privileges. A bounded privilege wraps an unrestricted privilege with
two immutable labels that indicate upper and lower bounds for downgrading.
DC-labels form a lattice structure (described in Sect. 2), and thus a bounded
privilege restricts where in the lattice downgrading may occur. A bounded priv-
ilege also has a mode, indicating whether the bounded privilege may be used for
declassification, endorsement, or both declassification and endorsement.

In terms of confidentiality, the upper bound limits the confidentiality of infor-
mation that can be declassified using the privilege, and the lower bound limits
the confidentiality of the information after declassification. For example, suppose
principal fb.com passes a bounded privilege to gogl.com. If the lower bound of
the bounded privilege is the label “gogl.com” then the privilege can be used to
declassify information only from fb.com to gogl.com. Even if gogl.com passes
the bounded privilege to another domain, say evil.com, the bounded privilege
cannot be used to declassify information from fb.com to evil.com.

In terms of integrity, the upper bound of a bounded privilege indicates the
least trustworthy level of information the privilege can be used to endorse, and
the lower bound limits the integrity of the information after endorsement. For
example, by setting the upper bound appropriately, fb.com can create a bounded
privilege that can be used to endorse data only from gogl.com, and cannot be
used to endorse other data, say from evil.com.

Robust Privileges. The security of a system might be at risk if an attacker
is able to influence the decision to declassify or endorse information, or can
influence what information is declassified. For example, consider a routine that
receives a secret pair (username,password) and uses a privilege to declassify the
first component of the pair. If an attacker (from another system component) can
influence the pair to be (password,username) and trigger the declassification,
the password will be leaked.

It’s My Privilege: Controlling Downgrading in DC-Labels 205

Robust declassification [25] and qualified robustness [16] are end-to-end
semantic security guarantees that ensure that attackers are unable to inappro-
priately influence what information is revealed to them. These security condi-
tions can be enforced by restricting declassification and endorsement operations.
A robust privilege wraps a privilege and ensures that it is used only in declassi-
fication and endorsement operations that satisfy appropriate robustness checks.

This paper makes the following contributions: (i) We introduce bounded
and robust privileges to limit the exercise of privileges for declassification and
endorsement. (ii) We present a semantic characterization of how bounded privi-
leges and robust privileges restrict declassification and endorsement operations.
(iii) We define run-time security checks for bounded privileges and robust priv-
ileges that soundly and completely enforce the semantic characterization of
restricted downgrading operations. The run-time checking for robust downgrad-
ing is effectively a weakening of the underlying unrestricted privilege: a surpris-
ingly simple characterization of robustness. (iv) We illustrate the applicability
of bounded and robust privileges via a case study. Moreover, use of restricted
privileges identified a vulnerability in an existing DC-label-based application.

This paper is organized as follows. Section 2 introduces the DC-label model.
Section 3 characterizes downgrading operations that use restricted privileges,
and Sect. 4 provides the corresponding enforcement. Section 5 describes security
properties in the presence of multiple restricted privileges. Case studies are given
in Sect. 6. Section 7 examines related work and Sect. 8 concludes.

2 Background

We briefly define three concepts fundamental to our presentation: the DC-label
model, privileges, and floating label systems.

C1 ⊑c C2 ⇐⇒ C2 ⇒ C1

C1 $c C2 ⇐⇒ C1 ∧ C2

C1 ⊓c C2 ⇐⇒ C1 ∨ C2

⊥c ≡ True ⊤c ≡ False

Fig. 1. Confidentiality lattice

Label Lattice. DC-labels [21] are pairs of con-
fidentiality and integrity policies. Confidential-
ity polices describe who may learn information.
Integrity polices describe who takes responsi-
bility or vouches for information. Both con-
fidentiality and integrity policies are positive
propositional formulas in conjunctive normal
form, where propositional constants represent
principals. Let CNF denote the set of all posi-
tive propositional formulas in conjunctive nor-
mal form; we use the term formula to range
over CNF. We assume that operations on for-
mulas always reduce their results to conjunctive
normal form.

I1 ⊑i I2 ⇐⇒ I1 ⇒ I2

I1 $i I2 ⇐⇒ I1 ∨ I2

I1 ⊓i I2 ⇐⇒ I1 ∧ I2

⊥i ≡ False ⊤i ≡ True

Fig. 2. Integrity latticeBoth confidentiality policies and integrity poli-
cies form lattices—see Figs. 1 and 2. We interpret
C1 ⊑c C2 as: C2 is at least as confidential as C1. For instance, Alice ∨ Bob ⊑c

Alice, which means that data readable by either Alice or Bob is less confiden-
tial than data readable only by Alice. Conjunctions of principals represent the

206 L. Waye et al.

multiple interest of principals to protect the data. Conversely, disjunctions of
principals represent groups wherein any member may learn the information.
The integrity lattice is dually defined [3]; we interpret I1 ⊑i I2 as: I1 is at least
as trustworthy as I2. For example, Alice ∧ Bob ⊑i Alice, which indicates that
data vouched for by Alice∧Bob is more trustworthy than data vouched for only
by Alice. In this case, conjunctions of principals represent groups whose mem-
bers are independently responsible for the information. For example, data with
integrity Alice ∧ Bob means that Alice is completely responsible for the data,
and so is Bob. Conversely, disjunctions of principals represent groups that col-
lectively take responsibility for the information, however, no principal takes sole
responsibility. For example, data with integrity Alice∨Bob means that Alice and
Bob collectively are responsible for the data, i.e., both may have contributed to,
or influenced the computation of the data.

⟨C1, I1⟩ ⊑ ⟨C2, I2⟩ ⇐⇒ C1 ⊑c C2 and I1 ⊑i I2

⟨C1, I1⟩ (⟨C2, I2⟩ ≡ ⟨C1 (c C2, I1 (i I2⟩
⟨C1, I1⟩ ⊓ ⟨C2, I2⟩ ≡ ⟨C1 ⊓c C2, I1 ⊓i I2⟩

c(⟨C, I⟩) ≡ C i(⟨C, I⟩) ≡ I

Fig. 3. Security lattice for DC-labels

Formally, a DC-label is a
pair of a confidentiality pol-
icy C and an integrity pol-
icy I, written ⟨C, I⟩. DC-labels
form a product lattice given
in Fig. 3. The ⊑ relation is
called the can-flow-to relation
because it describes informa-
tion flows that respect confidentiality and integrity policies. We write c(·) and
i(·) for the projection of confidentiality and integrity components, respectively.

⟨Alice, Charlie ⟨⋢⟩ Alice, Charlie ∧ Alice⟩

Fig. 4. Downgrading integrity

Downgrading. In the DC-label model,
one security policy downgrades to
another security policy if they do not
satisfy the can-flow-to relation. Con-
sider the pair of security labels in
Fig. 4. The first security label enforces
the policy that data is vouched
for by Charlie. The second security
label enforces the policy that data is
vouched for by Charlie and Alice, therefore a secure system cannot permit data
to flow from the sources protected by the first policy to sinks protected by
the second policy. This downgrade is an endorsement, since it downgrades only
integrity, i.e., it makes a value more trustworthy. Dually, a declassification down-
grades only confidentiality, i.e., it makes a value less confidential. Consider the
pair of security labels in Fig. 5: The first security label enforces the policy that
data is confidential to Alice ∧ Bob. The second security label enforces that data
is confidential to Bob. Permitting data to flow from a source protected by the
first policy to a sink protected by the second policy violates the confidentiality
expectations of the source.

⟨Alice ∧ Bob, Charlie ⟨⋢⟩ Bob, Charlie⟩

Fig. 5. Downgrading confidentiality

Privileges. Practical systems must permit some downgrading. The DC-label
model controls downgrading with privileges, where every principal has an asso-
ciated privilege, and a principal’s privilege enables downgrading. More precisely,

It’s My Privilege: Controlling Downgrading in DC-Labels 207

⟨C1, I1⟩ ⊑p ⟨C2, I2⟩ ⇐⇒ C1 ⊑c
p C2 and I1 ⊑i

p I2

where C1 ⊑c
p C2 ⇐⇒ C1 ⊑c C2 &c p

I1 ⊑i
p I2 ⇐⇒ I1 ⊓i p ⊑i I2

Fig. 6. Relation can-flow-to-with-privilege-p

given principal p, the can-flow-to-with-privilege-p relationship, written ⊑p,
describes the information flows permitted with p’s privilege—see Fig. 6. Observe
that both downgrading examples from the previous section are now permit-
ted by the can-flow-to-with-privilege relationship for the principal Alice, i.e.,
⟨Alice,Charlie⟩ ⊑Alice ⟨Alice,Charlie ∧ Alice⟩ and ⟨Alice ∧ Bob,Charlie⟩ ⊑Alice

⟨Bob,Charlie⟩.

Floating Label Systems. DC-labels are usually part of floating label sys-
tems like LIO [22], Hails [9], and COWL [23]. Such systems associate a current
label, Lpc , with every computational task—this label plays a role similar to the
program counter (PC) in more traditional language-based IFC approaches [19].
The current label denotes the fact that a computation depends only on data
with labels bounded above by Lpc . When a task with current label Lpc observes
information with label LA, the current label after observation, L′

pc , must “float”
above both the previous current label and the observed information’s label, i.e.,
L′

pc = Lpc % LA. Importantly, and to respect the security lattice, the current
label restricts the subsequent writes to communication channels. Specifically, a
task with current label Lpc is prevented from writing to channels protected by
policy LA if Lpc ̸⊑ LA.

Floating-label systems typically use some run-time representation of princi-
pals’ privilege, and downgrading operations require the run-time representation
of a principal p’s privilege to be presented in order to use the can-flow-to-with-
privilege-p relation, ⊑p. Thus, the run-time representation of a principal’s priv-
ilege acts like a capability to downgrade that principal’s information. We write

for the run-time representation of the privilege of principal p, and refer to
this value as a raw privilege (to contrast it with the restricted privileges that we
introduce in this paper).

3 Security Definitions

If a system contains , then downgrading of data with policies involving p
depends entirely on how is used in the system. Reasoning about what down-
grading occurs may require reasoning about global properties of the system.
Indeed, we found a vulnerability in a Hails example application [9] of a web-
based rock-paper-scissors game where use of a raw privilege was localized to one
component, but arbitrary data could be passed to this component to be down-
graded. This motivates our work to restrict privileges, and enable local reasoning
about downgrading that may occur in a system.

208 L. Waye et al.

A restricted privilege is a raw privilege “wrapped” with limitations on its use.
These limitations enable sound reasoning about the downgrading that may be
performed using the restricted privilege, even if arbitrary code uses the restricted
privilege. Thus, local reasoning that ensures is always appropriately restricted
provides global guarantees about the downgrading that can occur with respect
to policies involving p.

We present two kinds of restricted privileges, bounded privileges and robust
privileges, which provide simple declarative limitations on the use of raw privi-
leges.

Bounded Privileges. A bounded privilege wraps a raw privilege with down-
grading bounds and a downgrading mode. A downgrading bound is a pair of
security lattice labels Lhigh and Llow that provide upper and lower bounds on
downgrading, and the mode indicates whether the bounded privilege can be used
to both declassify and endorse, only to declassify, or only to endorse.

Definition 1 (Downgrading Bounds). An operation that downgrades from
security policy Lfrom to security policy Lto in a computational context with
current label Lpc satisfies downgrading bounds Lhigh and Llow if and only if
(Lfrom ! Lpc) ⊑ Lhigh and Llow ⊑ (Lto ! Lpc)

Definition 2 (Bounded Privileges). A bounded privilege with bounds Lhigh

and Llow and mode m on privilege , written , can be used only for
downgrading operations with privilege that satisfy downgrading bounds Lhigh

and Llow . Mode m is one of de, d, or e. Declassification operations are permitted
only if the mode is de or d; endorsement operations are permitted only if the mode
is de or e.

Fig. 7. Bounded downgrading

Figure 7 shows a visualiza-
tion of bounded downgrading.
The security lattice on the left
is overlaid with a visualization
of where bounded downgrad-
ing can occur (shaded) with
respect to bounds Lhigh and
Llow . The security lattice on
the right shows an example
of what labeled values can be
declassified (shaded) with a
bounded declassification privilege with bounds Lhigh = ⟨A ∧ B,A ∨ B⟩ and
Llow = ⟨A ∨ B,A ∧ B⟩.

In essence, the confidentiality lattice has collapsed c(Lhigh) and c(Llow) and
all points in between: information that has confidentiality up to c(Lhigh) may
be declassified to confidentiality c(Llow)—all other points in the confidentiality
lattice are not affected. Guarantees for endorsement with respect to bounded
privileges are similar, but for integrity instead of confidentiality.

It’s My Privilege: Controlling Downgrading in DC-Labels 209

Example 1 (Policy: Only Bob controls Alice’s privilege). Principal Alice allows
Bob to declassify her data provided that Bob vouches for the data and the deci-
sion to declassify. In other words, information labeled with Alice can be declassi-
fied only after endorsement by Bob. This property can be captured by a bounded
privilege with mode d and bounds: Lhigh = ⟨⊤c,Bob⟩, Llow = ⟨⊥c,Bob⟩. If the
privilege is used to declassify information that is not endorsed by Bob or in a
context where the current label is not endorsed by Bob, then the declassification
fails. In general, data must be vouched for by Bob (e.g., by using or another
restricted privilege) before the bounded privilege for Alice can be used. For exam-
ple, if a computational task has a current label Lpc = ⟨Alice,Bob ∨ Charlie⟩, the
current label must be endorsed by Bob first. By endorsing the current label, Bob
effectively vouches for any influence Charlie may have had on the computational
task.

Example 2 (Policy: “A close source said...”). The bounded privilege

or another restricted privilege) before requires that the integrity
of data being declassified is ⊤i, i.e., data that no principal takes responsibility
for. Alice may wish to impose this restriction on declassification involving data
confidential to her to ensure that she has plausible deniability regarding the
source of the data released. That is, the bounded privilege can not be used to
declassify data for which Alice is explicitly responsible.

Robust Privileges. Robustness [16,25] is a semantic security condition that
limits downgrading based on which principals might benefit from the downgrad-
ing, and which principals have influenced the data to downgrade and the decision
to downgrade.

Consider a declassification of information from a source protected by label
Lfrom to a sink protected by label Lto . A formula A (representing a principal
or party of principals) will benefit from the declassification if A cannot read
from the source, but can read the sink, i.e., c(Lfrom) ̸⊑c A and c(Lto) ⊑c A.
A robust declassification does not permit any principal that benefits from it to
influence either the decision to declassify or the data to declassify. A influences
the decision to declassify if A ⊑i i(Lpc), and A influences the data to declassify
if A ⊑i i(Lfrom).

Definition 3 (Robust Declassification). A robust declassification using
privilege from a source protected by Lfrom to a sink protected by Lto,
in a computational context with current label Lpc is a declassification (i.e.,
c(Lfrom) ⊑c

p c(Lto)) where ∀A ∈ CNF.c(Lto) ⊑c A ∧ c(Lfrom) ̸⊑c A ⇒ A ̸⊑i

i(Lpc) ∧A ̸⊑i i(Lfrom).

For endorsement, a principal benifits if it may be held responsible for information
from the source but is not held responsible for information from the sink. In other
words, A benefits from an endorsement if A gets absolved of responsibility for
a value, i.e., A ⊑i i(Lfrom) ∧ A ̸⊑i i(Lto). Robust endorsement does not permit
principals that benefit from it to influence the decision to endorse.

210 L. Waye et al.

Definition 4 (Robust Endorsement). A robust endorsement using privilege
from a source protected by Lfrom to a sink protected by Lto, in a computational

context with current label Lpc is an endorsement (i.e., i(Lfrom) ⊑i
p i(Lto)) where

∀A ∈ CNF.A ⊑i i(Lfrom) ∧A ̸⊑i i(Lto)⇒ A ̸⊑i i(Lpc).

A robust privilege is a privilege that can only be used for robust downgrading
operations.

Definition 5 (Robust Privilege). A robust privilege with mode m on priv-
ilege , written , restricts downgrading operations where it is used
to those that are robust for . Mode m is one of de, d, or e. Declassification
operations are permitted only if the mode is de or d; endorsement operations are
permitted only if the mode is de or e.

The definitions of robust declassification and endorsements both quantify over
all formulas A in the (possibly infinite) set CNF. In Sect. 4, we consider how to
implement efficient checks that do not use universal quantification.

Fig. 8. Robust declassification

Figure 8 shows a visu-
alization of where robust
declassification is allowed for
a given robust privilege. The
security lattice on the left
is overlaid with a visualiza-
tion of where a value with
label Lfrom can be declassi-
fied to (shaded line) using a
robust declassification privi-
lege. (Note that the current
label Lpc is not included in
the diagram for brevity.) I represents the boolean formula for the integrity of
the labeled value. Llow is one of the lowest points where Lfrom can be declassi-
fied to while still being a robust declassification, i.e., Llow ⊑ Lto . That is, the
integrity of the label of the value for declassification (together with the integrity
of the current label of the process) is used as a lower bound for declassification.
Intuitively, those who influence a declassification should not learn from it. In
the right hand side of Fig. 8, the shaded line indicates to where a robust priv-
ilege may declassify the labeled value ⟨A ∧ B,A⟩. The declassification is robust
if A is not able to learn from the declassification. As a result, the value could
not be declassified to ⟨A ∨ B,A⟩ as A would learn from a declassification that it
influenced. In contrast, it is robust to declassify it to ⟨B,A⟩.

4 Enforcement for Robust Privileges

In this section we describe enforcement mechanisms for restricted privileges
that satisfy their semantic characterizations described in Sect. 3. We have imple-
mented these mechanisms in LIO and use them in our case study (see Sect. 6).

It’s My Privilege: Controlling Downgrading in DC-Labels 211

When a bounded privilege (Definition 2) is used at run time, it is simple to
check that the downgrading operation satisfies the appropriate bounds, since the
labels relevant to the downgrading (Lfrom , Lto , and Lpc) are all available at run
time, and the label ordering relation can be easily checked dynamically.

Robust privileges (Definition 5) impose restrictions on downgrading opera-
tions which quantify over formulas A. However, attempting to explicitly check
each possible formula A at run time is not feasible. We can however, derive simple
and efficient run-time checks that are sound and complete with respect to their
semantic characterizations. These checks are inspired by Chong and Meyers [6],
who provide run-time checks for robustness that are sound but not complete.

The following theorem shows that the semantic characterization of robust
declassification (Definition 3) is equivalent to two confidentiality-policy compar-
isons involving only Lfrom , Lto , and Lpc .

Theorem 1 (Robust Declassification Check). A declassification using priv-
ilege from a source protected by Lfrom to a sink protected by Lto in a computa-
tional context with current label Lpc is robust if and only if c(Lfrom) ⊑c

p c(Lto),
c(Lfrom) ⊑c c(Lto) "c i(Lpc), and c(Lfrom) ⊑c c(Lto) "c i(Lfrom).

The run-time check ensures that if there is any formula A that benefits from
the declassification (c(Lfrom) ̸⊑c A and c(Lto) ⊑c A) then A ̸⊑i i(Lpc) (or,
equivalently, i(Lpc) ̸⊑c A), and similarly that A ̸⊑i i(Lfrom). Thus, the run-time
check converts a comparison of integrity policies to a comparison of integrity
policies that does not involve A.

The next theorem describes a simple run-time check for robust endorsement.

Theorem 2 (Robust Endorsement Check). An endorsement using privilege
from a source protected by Lfrom to a sink protected by Lto, in a computational

context with current label Lpc is robust (Definition 4) if and only if i(Lfrom) ⊑i
p

i(Lto), and i(Lpc) ⊓i i(Lfrom) ⊑i i(Lto).

The run-time check that all formulas A that may be responsible for either the
current label (A ⊑i i(Lpc)) or the data itself (A ⊑i i(Lfrom)) should also be
responsible for the data after endorsement (A ⊑i i(Lto)). Proofs of Theorems 1
and 2 are omitted due to space limitations.

Alternative Formulation. In DC-labels, privileges can be arbitrary formulas,
which can be stronger or weaker than privileges for individual principals. For
example, a privilege for A∧B can downgrade more information than a privilege
for A or B alone, whereas a privilege for A ∨ B can downgrade less information
than a privilege for A or B alone. Leveraging this feature, we show how robust
downgrading can be seen (and enforced) as normal downgrading operations that
use a weakened privilege. That is, the privilege used in a downgrading operation
is weakened so as to permit all and only robust downgrading operations.

The next corollaries follow from Theorems 1 and 2 and the definition for the
can-flow-to-with-privilege-p relation.

212 L. Waye et al.

Corollary 1. A declassification using raw privilege from a source protected
by Lfrom to a sink protected by Lto in a computational context with current label
Lpc is robust (Definition 3) if and only if c(Lfrom) ⊑c

p ∨ i(Lfrom) ∨ i(Lpc)
c(Lto).

This indicates that robust declassification can be achieved by simply weakening
privilege with the integrity labels of the current label and the data to be
released, i.e., p ∨ i(Lfrom) ∨ i(Lpc). Robust endorsement has a similar corollary.

Corollary 2. An endorsement using raw privilege from a source protected
by Lfrom to a sink protected by Lto in a computational context with current label
Lpc is robust (Definition 3) if and only if i(Lfrom) ⊑i

p ∨ i(Lpc)
i(Lto).

The proof of Corollary 1 is omitted due to space limitations; the proof of Corol-
lary 2 is similar.

The current implementation of DC-labels [21] provides the ability to infer
appropriate Lto labels of downgrading operations given a privilege p. By express-
ing the runtime checks for robust downgrading operations as a standard down-
grading operation with a weakened privilege, we can take advantage of this
feature and automatically infer a suitable Lto label if one exists. This reduces
the burden on the programmer.

5 Interaction Among Restricted Privileges

We can extend restricted privileges to allow them to be composed, i.e., by allow-
ing bounded privileges and robust privileges to wrap around other restricted
privileges, as well as raw privileges. The guarantee provided by the composi-
tion of restricted privileges is the intersection of their individual guarantees.
For example, a bounded privilege composed with another bounded privilege
will require that downgrading operations satisfy the bounds of both privileges.
A bounded privilege composed with a robust privilege (and vice-versa) requires
the downgrading both to be robust and satisfy the downgrading bounds. Robust
privileges are idempotent: a robust privilege composed with a robust privilege
will simply require all downgrade operations to be robust.

Fig. 9. Multiple bounds.

Privileges might also interact because a system
has multiple privileges available. Unlike composed
privileges (which further restrict possible information
flows), multiple privileges enable additional informa-
tion flows. In the remainder of the section, we discuss
the guarantees that result from the use of multi-
ple restricted privileges. In the accompanying figures,
bounded privileges are depicted as a shaded rectangle
corresponding to their bounds. Robust declassifica-
tion privileges are depicted as a pair of dashed lines:
one line represents the integrity of the source and the
other line represents the lower bound to which data may be declassified. Labels
are depicted as points along with their names.

It’s My Privilege: Controlling Downgrading in DC-Labels 213

Bounded Declassification and Bounded Endorsement. Figure 9 depicts two
bounded privileges, one for declassification and one for endorsement, as well
as a label, Lfrom that is outside the bounds of the declassification privilege.
Because the bounds of the privileges overlap, data can transitively flow from
Lfrom to Lto . The endorsement privilege enables data from Lfrom to be endorsed
to L′. The bounded declassification privilege can then declassify data from L′

to Lto .

Fig. 10. Bounded and
robust declassification.

Bounded Declassification and Robust Declassification.
Figure 10 depicts two declassification privileges, one
robust and one bounded, and a label that is outside
the bounds of the bounded declassification privilege.
Neither privilege alone permits a flow from Lfrom to
Lto . However, when used together, the robust declassi-
fication privilege permits declassification of data from
Lfrom to L′ and the bounded declassification per-
mits a flow from L′ to Lto , completing a flow from
Lfrom to Lto .

Endorsement and Robust Declassification. In a system with unrestricted
endorsement, robust declassification provides almost no protection against
attackers influencing what they learn. Intuitively, the endorsement of data by
p can make the data trustworthy enough to make a subsequent declassification
robust. Consider a declassification of a value from label Lfrom = ⟨A ∧ B,A⟩ to
L = ⟨A,A⟩ using the robust privilege . This declassification is not
robust: principal A, who benefits from this declassification, may be held respon-
sible for the value, i.e., A may have decided what gets declassified. However,
an unrestricted endorsement privilege could be used to endorse the value—
effectively endorsing any possible influence by A. In other words, ⟨A ∧ B,A⟩ can
be endorsed to ⟨A ∧ B,B⟩, and a subsequent declassification from ⟨A ∧ B,B⟩ to
⟨A,B⟩ is robust.

Llow

L1

L2

I1

I2

C 1

C 2

L''

L'

Fig. 11. Bounded endorse-
ment and robust declassifi-
cation.

Bounded endorsement effectively limits the
aforementioned deletrious effects of unrestricted
endorsement to the bounded area of the lattice,
Fig. 11 depicts this situation. Besides mitigating
the effects of unrestricted endorsement, bounded
endorsement is useful to relax robust declassifica-
tion so that it succeeds for principals collaborat-
ing in achieving a common goal—see, for example,
Sect. 6.

Bounded and Robust Declassification. Figure 10
shows the guarantees when a robust declassification-
only privilege (i.e.,) and a bounded declassification-only privilege (i.e.,

) for the same principal are both available in the system. Intuitively, p’s

214 L. Waye et al.

information can be declassified from Lfromto L′ using the robust privilege. The
information can then be declassified again to Lto using the bounded privilege,
even though Lfrom is below the threshold imposed by robust declassification (i.e.,
the lowest possible label that robust declassification could declassify label Lfrom).
Thus, the presence of a bounded declassification-only privilege can bypass the
guarantees provided by robust declassification.

Several Bounded Privileges. Multiple robust privileges for the same principal
do not add any additional complexity, as all robust privileges are equivalent
(up to their modes). Bounded privileges, however, may differ on the bounds
they impose. The presence of multiple bounded privileges in a system for prin-
cipal p collapses the label lattice for principal p in complex ways. For instance,
the left diagram of Fig. 9 illustrates an example where there is a bounded
endorsement-only privilege and a bounded declassification-only privilege with
different bounds. It may be possible for a value labeled Lfrom to be relabeled to
Lto via an endorsement to L′ followed by a declassification. Thus, labels between
Lfrom and L′ and between L′ and Lto are effectively collapsed, since the bounded
privileges allow a value with any of these labels to be relabeled to any other of
these labels. More generally, as more overlapping bounded privileges exist for a
given principal, data can be downgraded in more possible ways.

6 Case Studies

6.1 Calendar Case Study

We have extended LIO [22] with support for bounded privileges and robust privi-
leges, and used them to develop a Calendar application to explore and illustrate
the utility of restricted privileges. The application allows users to view their
appointments, and schedule appointments with each other. DC-label principals
are the calendar users. A user’s appointments are confidential to that user.

We consider a setting where principals belong to groups and a principal is
willing to disclose her availability to all and only members of her groups. For
example, if Bob wants to schedule an appointment with Alice at time t, the
application will check Alice’s calendar and inform Bob whether Alice is available
at that time. This operation, which declassifies Alice’s availability at time t to
Bob, should succeed only if Alice and Bob are in the same group.

Each user A has a robust declassification privilege , and, for each

group G that A belongs to, a bounded endorsement privilege , where
G is the disjunction of all users in the group. These are the only privileges
available in the system for user A, and thus all endorsements must be bounded
appropriately, and all declassifications must be robust.

Joint scheduling between A and B works as follows:

1. User B sends a scheduling request for time t labeled ⟨B,B⟩ to user A.
2. User A computes her availability for time t. Because the context that com-

putes the availability reads data labeled ⟨A,A⟩ and ⟨B,A⟩, the label of the
availability result is ⟨A ∧ B,A ∨ B⟩.

It’s My Privilege: Controlling Downgrading in DC-Labels 215

3. If A and B are both in some group G, then A uses her bounded privilege
to endorse the availability result to ⟨A ∧ B,A⟩, since she is prepared to take
sole responsibility for the availability result. Since both A and B are in the
same group, the endorsement satisfies the bounds (i.e., A ∨ B ⊑i G). If there
is no group for which both A and B are members, then A has no bounded
endorsement privilege for which the bounds will be satisfied.

4. User A uses her robust privilege to declassify the availability result to ⟨B,A⟩.
The declassification is robust.

5. User A sends the declassified value to B.

Because all downgrading in the system relevant to user A must use A’s
restricted privileges, we obtain strong system-wide guarantees, even if A’s
restricted privileges manage to escape from the scheduling component, and even
if B sends malicious scheduling requests. Section 5 (Fig. 11) discusses in more
detail the system-wide guarantees that hold when both a bounded endorsement
privilege and a robust declassification privilege are available.

6.2 Restricted Privileges in Existing Applications

Using our restricted privileges, we found a security vulnerability in an appli-
cation written using Haskell Automatic Information Labeling System (Hails)
[9]. Hails is a web framework built on LIO that extends the traditional Model-
View-Controller paradigm to Model-Policy-View-Controller. The policy module
specifies all models and describes the labels for data fetched from the data-
base. When data is stored in the database, Hails checks labels against the policy
module to ensure appropriate data integrity. The policy module has access to
a privilege that can declassify all models. As a design pattern, policy modules
export functions that perform declassification for untrusted applications using
the privilege; untrusted applications never have direct access to the privilege.

Rock-Paper-Scissors1 is a Hails application that contains a security vulner-
ability due to misuse of the policy privilege, despite being written by security
experts who developed Hails.

The policy module includes a function to get the outcome of a match given a
particular move by a player. This function can be exploited to reveal the oppo-
nent’s move before the player has actually committed to a move by submitting
it to the database. As a result, a player can always win a match by exploiting
this function to determine which move will win, and then committing to that
winning move. When we replaced the policy module’s raw privilege with a robust
privilege, the robust declassification check signalled a potential security vulner-
ability. To fix the vulnerability, we added code that checks whether a player had
committed to a move (i.e., the move is in the database), and, if so, endorses the
submitted move. This endorsement allows the robust declassification check to
succeed. Endorsing only when the player has committed to his move fixes the
security vulnerability.
1 https://github.com/scslab/hails/tree/master/examples/hails-rock.

216 L. Waye et al.

7 Related Work

Declassification can be characterized into different dimensions: who, what, where,
and when [20]. Our work can be considering as restricting where in the security
lattice downgrading may occur (bounded downgrading) and who may influence
downgrading (robustness). Almeida Matos and Boudol [1] introduce a construct
flow p ≺ q in c to indicate where additional information flows are allowed within
a lexical scope. Intransitive noninterference [11,12,18] posits a non-transitive
information flow ordering which describes what downgrading operations are
permitted. Mantel and Sands [11] combine intransitive noninterference with
language techniques that use declassification annotations to explicitly identify
non-transitive information flows. In our bounded declassification mechanism,
violating the normal ordering of security levels is tied to a runtime value, and
not lexically scoped or marked by annotations.

In Jif [13], declassifications may explicitly state where in the security lattice
the declassification occurs. By contrast, our bounded mechanisms declare this
restriction on the run-time value that authorizes downgrading. Jif uses a form of
access control to restrict which code may downgrade information, coined selective
declassification by Pottier and Conchon [17]. Specifically, a downgrading opera-
tion that may compromise the security of principal p may only occur in code that
has been (statically or dynamically) authorized by p. Similarly, the authority to
declassify or endorse information in Asbestos [7], HiStar [26], Flume [10], and
COWL [23] must come from the creator of the exercised privileges. By contrast,
LIO associates the authority to declassify or endorse a principal’s information
with a run-time value. This capability-like approach to authorizing downgrading
enables our local declarative approach to restrict downgrading. Birgisson et al. [4]
use capabilities to restrict the ability to read and write memory locations, but
do not consider the use of capabilities to restrict downgrading.

Zdancewic and Myers [25] introduce the semantic security condition of robust
declassification, and Myers et al. [16] enforce robust declassification with a
security type system [19,24], and introduce qualified robustness, which extends
the concept to reason about endorsement. Askarov and Myers [2] subsequently
present a semantic framework for downgrading, and present a crisper version of
qualified robustness. Chong and Myers [6] extend the notion of robust declassi-
fication to the Decentralized Label Model [14,15]. The run-time checks used in
this work to enforce robustness are analogous to the run-time checks Chong and
Myers introduce for the DLM. In other work, Chong and Myers [5] note that
the semantic security condition for robust declassification applies to information
flow of confidential information generally, including, for example, information
erasure, and is more general than just declassification. If the only privilege for
p available in the system is a robust privilege with mode d then the system will
be robust for p. If the privilege for that mode is de (i.e., robust declassification
operations and robust endorsement operations are possible), then the end-to-
end security guarantee is qualified robustness [2,16]. A system satisfies qualified
robustness if the only way an attacker can influence what information is released
to it is via robust endorsement operations.

It’s My Privilege: Controlling Downgrading in DC-Labels 217

Foley et al. incorporate bounds constraints on a system with relabeling opera-
tions on objects [8]. Our model performs relabeling based on the use of capability-
like tokens rather than with respect to a particular subject. Bound restrictions
can be placed per privilege rather than on all relabeling operations, so the guar-
antees of this work are more dependent on what sorts of privileges are available
for use, but do not require changes to the trusted computing base.

The system HiStar [26] provides the notion of gates: entities designed to
encapsulate privileges so that processes can safely switch their current label
by exercising them through the gate. Gates have a clearance component which
imposes an upper bound on the label that results from using it. Gates can be
leveraged to restrict the use of privileges similar to upper bounds in bounded
privileges. Similar to our approach, Flume [10] distinguishes privileges used for
declassification (symbol −) and endorsement (symbol +).

8 Conclusion

Restricted privileges are a new mechanism to control declassification and
endorsement in DC-labels that is simple and intuitive yet expresses a rich set of
desirable policies. Bounded privileges impose upper and lower bounds on data
that is declassified or endorsed. Robust privileges help prevent the accidental or
malicious exercise of privileges to downgrade more information than intended,
and can provide the end-to-end security guarantees of robustness and qualified
robustness. We provide sound and complete efficient security checks for down-
grading using restricted privileges. We note that robust downgrading operations
can be viewed as privileged downgrading with a weakened privilege. We explore
the guarantees provided by combining the use of bounded and robust privileges
as well as their composition in a case study. This work establishes a basis for
better design of IFC systems that use privileges for downgrading information.

References

1. Almeida Matos, A., Boudol, G.: On declassification and the non-disclosure policy.
In: Proceedingsof the 18th IEEE Computer Security Foundations Workshop, pp.
226–240 (2005)

2. Askarov, A., Myers, A.: A semantic framework for declassification and endorse-
ment. In: Proceedings of the 19th European Symposium on Programming (2010)

3. Biba, K.J.: Integrity considerations for secure computer systems. ESD-TR-76-372
(1977)

4. Birgisson, A., Russo, A., Sabelfeld, A.: Capabilities for information flow. In: Pro-
ceedings of the 6th Workshop on Programming Languages and Analysis for Security
(2011)

5. Chong, S., Myers, A.C.: Language-based information erasure. In: Proceeding of the
18th IEEE Computer Security Foundations Workshop, pp. 241–254, June 2005

6. Chong, S., Myers, A.C.: Decentralized robustness. In: Proceedings of the 19th IEEE
Workshop on Computer Security Foundations, pp. 242–256 (2006)

218 L. Waye et al.

7. Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C., Ziegler, D., Kohler, E.,
Mazières, D., Kaashoek, F., Morris, R.: Labels and event processes in the Asbestos
operating system. In: Proceedings of the 20th ACM Symposium on Operating
Systems Principles (2005)

8. Foley, S., Gong, L., Qian, X.: A security model of dynamic labeling providing a
tiered approach to verification. In: Proceedings of the 1996 IEEE Symposium on
Security and Privacy, pp. 142–158 (1996)

9. Giffin, D.B., Levy, A., Stefan, D., Terei, D., Mazières, D., Mitchell, J., Russo, A.:
Hails: Protecting data privacy in untrusted web applications. In: Proceedings of
the Symposium on Operating Systems Design and Implementation (2012)

10. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Morris,
R.: Information flow control for standard OS abstractions. In: Proceedings of the
21st Symposium on Operating Systems Principles, October 2007

11. Mantel, H., Sands, D.: Controlled declassification based on intransitive noninterfer-
ence. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 129–145. Springer,
Heidelberg (2004)

12. van der Meyden, R.: What, indeed, is intransitive noninterference? In: Biskup, J.,
López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 235–250. Springer, Heidel-
berg (2007)

13. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java Informa-
tion Flow (2001-), software release. http://www.cs.cornell.edu/jif

14. Myers, A.C., Liskov, B.: A decentralized model for information flow control. In:
Proceedings of the 16th ACM Symposium on Operating System Principles, pp.
129–142. New York, NY, USA (1997)

15. Myers, A.C., Liskov, B.: Complete, safe information flow with decentralized labels.
In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 186–197,
May 1998

16. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification and
qualified robustness. J. Comput. Secur. 14(2), 157–196 (2006)

17. Pottier, F., Conchon, S.: Information flow inference for free. In: Proceedings of the
5th ACM SIGPLAN International Conference on Functional Programming, pp.
46–57. New York, NY, USA (2000)

18. Roscoe, A.W., Goldsmith, M.H.: What is intransitive noninterference? In: Pro-
ceedings of the 12th IEEE Computer Security Foundations Workshop (1999)

19. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

20. Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. In: Proceed-
ings of the 18th IEEE Computer Security Foundations Workshop, pp. 255–269,
June 2005

21. Stefan, D., Russo, A., Mazières, D., Mitchell, J.C.: Disjunction category labels. In:
Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161, pp. 223–239. Springer, Heidelberg
(2012)

22. Stefan, D., Russo, A., Mitchell, J.C., Mazières, D.: Flexible Dynamic Information
Flow Control in Haskell. In: Proceedings of the 4th ACM Symposium on Haskell,
pp. 95–106. New York, NY, USA (2011)

23. Stefan, D., Yang, E.Z., Marchenko, P., Russo, A., Herman, D., Karp, B., Mazières,
D.: Protecting users by confining JavaScript with COWL. In: Proceedings of the
11th Symposium on Operating Systems Design and Implementation, October 2014

24. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis.
J. Comput. Secur. 4(3), 167–187 (1996)

It’s My Privilege: Controlling Downgrading in DC-Labels 219

25. Zdancewic, S., Myers, A.C.: Robust declassification. In: Proceedings of the 14th
IEEE Computer Security Foundations Workshop, pp. 15–23, Jun 2001

26. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information
flow explicit in HiStar. In: Proceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation, pp. 263–278 (2006)

