
Whip: Higher-Order Contracts for Modern Services 36:1

A REMAINING DEFINITIONS AND PROOFS
A.1 Remaining Meta-functions
contract_for(� ,b) = (n,X) if 9ee 7!H

lX 2 blame� (�). where ep(ee) = b .� ^ nm(ee) = n
contract_for(� ,b) = (n, 7) if (9ee 7!H

l7 2 blame� (�). where ep(ee) = b .� ^ nm(ee) = n)
^ (8ee 0 7!H

l

0
c 2 blame� (�). if ep(ee 0) = b

then nm(ee) = k and c = 7)
ep(a.r satisfies nhvi) = a.r
ep(a.i expects se) = a.i
nm(a.r satisfies nhvi) = n

nm(a.i expects se) = nm(se)

names metafunction.

names(a) = {a}

names(monl(� , Pa)) = {a}

names(m to a) = ; names(m̂ to a) = ;

Ha1 = names(P) Ha2 = names(Q)

names(P ||Q) = Ha1 [Ha2
labels metafunction.

labels(a) = ;

labels(monl(� , Pa)) = {l }

labels(m to a) = ; labels(m̂ to a) = ;

H
l1 = labels(P) H

l2 = labels(Q)

labels(P ||Q) = H
l1 [Hl2

A.2 Congruence Relation

P = P

P ||Q = Q || P
P = P

0
Q = Q 0

P ||Q = P

0 ||Q 0

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 36. Publication date: January 2017.

36:2 Lucas Waye, Christos Dimoulas, and Stephen Chong

A.3 Well-formedness
8(a satisfies kh�i 7! X) 2 C . C (a) = k

C � C

P `CS P

`CS P wf

P `CS Q P `CS R

names(Q) \ names(R) = ; labels(Q) \ labels(R) = ;
P `CS Q || R

conf� � C l , † S = spec(�)
8se . se 2 dom(blame�) i� se 2 dom(prov�)
8se 7!H

l 2 blame� , l 2Hl . P � blame l for se
8#n from b expects se 7!H

l 2 blame� , l 2Hl . P � blame l for se
8a 7! n 2 C. a satisfies khvi 7! X 2 conf�

P `CS mon

l(� , Pa)

P `CS a

m = req #n from b : s to a or
m = reply #n from b : s to a

P `CS m to a

k = C (a) {identified(m) 7! c} � C
8l 2Hl . P � blame l for from(a) satisfies khindex(m)i

8l 2 flid . P � blame l for identified(m)

P `CS m with {se-blame:=Hl ; id-conf:=c; id-blame:=flid } to b

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 36. Publication date: January 2017.

Whip: Higher-Order Contracts for Modern Services 36:3

First, note that we de�ne well-formedness judgment P `CS P

0, where P is the entire process, and
P

0 is some subprocess of P . For brevity, we used wellformedness judgment `CS P wf where P was
the entire process, and so treat that as equivalent to P `CS P .

L���� A.1 (P����������� ��W�������������� ���� ����������). If P `CS P

0 and P = P

00

and P 0 = P

000 then P

00 `CS P

000.

P����. The congruence relation only changes the order of the processes. The well-formedness
relation is not sensitive to ordering of the processes. ⇤

L���� A.2 (lift P�������� S����W��������������). If P[monl(� , Pa)] `CS mon

l(� , Pa) and
�

0,m with {se-blame:=Hl ; id-conf:=c; id-blame:=flid } to b = lift� (k, c,m, l) and (if from(m) , a

then l = †), then
8se 7!H

l 2 blame� 0, l 0 2Hl . P[monl 0(� , Pa)] � blame l 0 for se and
8(#n from c expects se) 7!H

l 2 blame� 0, l 0 2 Hl . P[monl 0(� , Pa)] � blame l 0 for se
.

P����. By inspection of the lift rule given, there are two entries that can be updated: the
service endpoint, and seid . We �rst show 8l 0 2 H

ls . P[monl(� 0, Pa)] � blame l 0 for se , then 8l 0 2
f
lid . P[monl(� 0, Pa)] � blame l 0 for seid .

For the well-formedness of se , we take cases on if se 2 dom(blame�):
• Case se < dom(blame�):
It is the case then that Hls = {l }. Due to well-formedness, we have that

8se . se 2 dom(blame�) i� se 2 dom(prov�)

It will be the case then that se < dom(prov�) so pes = b intro. If b = a we can form the
following derivation:

prov� 0 (se) = a intro

P[monl(� 0, Pa)] � blame l for se
Otherwise we are in a partially deployed case (based on the reduction rules that call lift).
As a result, in these cases la = †. So we can form the partial deployment derivation:

prov� 0 (se) = b intro

P[monl(� 0, Pa)] � blame † for se
• Case se 2 dom(blame�):
Due to well-formedness, 8se 2 blame� , then 8l 0 2 H

ls . P[monl(� , Pa)] � blame l 0 for se .
Additionally, since no provenance or blame or provenance information is overwritten the
derivation must hold for � 0, so, 8l 0 2 Hls . P[monl(� 0, Pa)] � blame l 0 for re .

Next we show the well-formedness of seid . We also perform a case analysis on the type of the
message together with if seid 2 dom(blame�).
• Case type(m) == req ^ seid 2 dom(blame�): Due to well-formedness of the store, we have
that 8se 7! H

l 2 blame� , l 2 Hl . P[monl(� , Pa)] � blame l for se , so it must be the case that
8l 0 2 flid . P[monl(� , Pa)] � blame l 0 for seid . As a result, since the entry is replaced with itself
along with its provenance (i.e., no information is replaced), the well-formedness condition
still holds.
• Case type(m) == req ^ seid < dom(blame�): It is the case then that flid = {l }. Due to
well-formedness, we have that 8se . se 2 dom(blame�) i� se 2 dom(prov�). As a result
seid < dom(prov�).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 36. Publication date: January 2017.

36:4 Lucas Waye, Christos Dimoulas, and Stephen Chong

Next we consider if b = a. It will be the case that prov� 0 (seid) = a intro. So the derivation
for this case is:

prov� 0 = a intro

P[monl(� 0, Pa)] � blame l for seid
Otherwise, if b , a, we are in a partially deployed case (based on the reduction rules that call
lift). As a result, in these cases la = †. So we can form the partial deployment derivation:

prov� 0 = b intro

P[monl(� 0, Pa)] � blame † for seid
• Case type(m) == reply ^ seid 2 dom(blame�):
The same reasoning applies for the case if type(m) == req and seid 2 dom(blame�) as the
entry is looked up in the same fashion for requests and replies.
• Case type(m) == reply ^ seid < dom(blame�):
It is the case then thatflid = H

ls . From well-formedness of the store, 8l 0 2 Hls . P[monl(� , Pa)] �
blame l 0 for se . Also from store well-formedness, it must be the case that seid < dom(blame�)
as 8se . se 2 dom(blame�) i� se 2 dom(prov�). Because of this, we know that prov� 0 (seid) =
se intro.
We can directly set up the derivation for an uncon�rmed service identi�cation for each l 0 2 Hls :

prov� 0 (seid) = (se intro)
(from well-formedness)

P[monl(� , Pa)] � blame l 0 for se

P[monl(� , Pa)] � blame l 0 for seid
⇤

L���� A.3 (lower P�������� S����W��������������). If
P `CS mon

l(� 0, Pa) ||m with {se-blame:=Hl ; id-conf:=c; id-blame:=flid } to b and
�

0,m = lower� (k, c,m with {se-blame:=Hl ; id-conf:=c; id-blame:=flid } to b) then
8se 7!H

l 2 blame� 0, l 0 2Hl . P[monl 0(� , Pa)] � blame l 0 for se and
8(#n from c expects se) 7!H

l 2 blame� 0, l 0 2 Hl . P[monl 0(� , Pa)] � blame l 0 for se
.

P����. Since the message is well-formed, there will be blame consistent with provenance for
the reply and service identi�ed. Additionally, the provenance information in the receiving adapter
is not overwritten so any existing derivations of blame consistent with provenance will still hold.
As a result, the services added to the store will still have a valid derivation of blame consistent with
provenance. ⇤

L���� A.4 (lift ��� lower �������� �����). If P[monl(� , Pa)] `CS mon

l(� 0, Pa) and either
�

0,m̂ = lift� (k, c,m, l) or � 0,m = lower� (k, c,m̂), then
(1) S = spec(� 0)
(2) 8se . se 2 dom(blame� 0) i� se 2 dom(prov� 0)
(3) 8a 7! k 2 C. a satisfies khvi 7! X 2 conf� 0

P����. For the �rst case, S = spec(� 0), it is clear from the store updates in the metafunctions
that the store is not changed.
For the second case, 8se . se 2 dom(blame� 0) i� re 2 dom(prov� 0), it is clear by inspection that

the updates to the blame registry and provenance registry a�ect the same domain of services.
For the third case, 8a 7! n 2 C. a satisfies khvi 7! X 2 conf� 0 , services added to the blame

registry do not ever become uncon�rmed after becoming con�rmed (i.e., note the usage and

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 36. Publication date: January 2017.

Whip: Higher-Order Contracts for Modern Services 36:5

de�nition of the confirmed_or function). As a result, if � had this property, then no replacement
could make the service become uncon�rmed so it will still hold for � 0.

⇤

T������ A.5 (P����������� �� W��������������). If P `CS P P �! P

0 then P

0 `CS P

0.

P����. By case analysis on step used.
• Case Black-box Send Request
From the de�nition of the rule, we have

n fresh a , b
P[a] �! P[a || request #n from a containing s to b]

where P = P[a] and P

0 = P[a || request #n from a containing s to b]. We also have
from our congruence rules that

P[a || request #n from a containing s to b] =
P[a] || request #n from a containing s to b

We also have that P `CS P . We can re-use the proof derivation of that to construct P 0 `CS P[a].
P

0 can be used in place of P on the left-hand side as it contains the same relevant processes
to the blame-consistent-with-provenance relation. We can now construct a new derivation
for P 0. We can use the base message well-formed rule along with the composition rule to get:

...
P

0 `CS P[a] P

0 `CS request #n from a containing s to b

names(P[a]) \ names(request #n from a containing s to b) = ;
labels(P[a]) \ labels(request #n from a containing s to b) = ;

P

0 `CS P[a] || request #n from a containing s to b

• Case Black-box Send Reply
From the de�nition of the rule, we have

a , b
P[a] �! P[a || reply #n from a containing s to b]

where P = P[a] and P 0 = P[a || reply #n from a containing s to b]. We also have from
our congruence rules that

P[a || reply #n from a containing s to b] = P[a] || reply #n from a containing s to b

.We also have that P `CS P .We can re-use the proof derivation of that to construct P 0 `CS P[a].
P

0 can be used in place of P on the left-hand side as it contains the same relevant processes
to the blame-consistent-with-provenance relation. We can now construct a new derivation
for P 0. We can use the base message well-formed rule along with the composition rule to get:

...
P

0 `CS P[a] P

0 `CS reply #n from a containing s to b

names(P[a]) \ names(reply #n from a containing s to b) = ;
labels(P[a]) \ labels(reply #n from a containing s to b) = ;

P

0 `CS P[a] || reply #n from a containing s to b

• Case Black-box Receive
From the de�nition of the rule, we have

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 36. Publication date: January 2017.

36:6 Lucas Waye, Christos Dimoulas, and Stephen Chong

P[a ||m to a] �! P[a]

where P = P[a ||m to a] and P

0 = P[a]. We also have that P `CS P . We can re-use the
proof derivation of that to construct P 0 `CS P[a] by removing the part of the derivation that
included the rule used for the received message. P 0 can be used in place of P on the left-hand
side as it contains the same relevant processes to the blame-consistent-with-provenance
relation. With this, we can now construct a new derivation for P 0 directly to get P 0 `CS P[a].
• Case Adapter Send Enhanced
From the de�nition of the rule, we have

(k,X) = contract_for� (b,m) �

0,m̂ = lift� (k,X,m, l)
P[monl(� , Pa ||m to b)]! P[monl(� 0, Pa) || m̂ to b]

where P = P[monl(� , Pa ||m to b)] and P 0 = P[monl(� 0, Pa) || m̂ to b]. From Theorems A.2
and A.4, we can show that P[monl(� 0, Pa)] `CS mon

l(� 0, Pa). We note that we can use P 0 in
place of P[monl(� 0, Pa)] as it contains everything but the extra enhanced message, so all
derivations will still hold for P 0. Since the labels came from the store which is well-formed,
along with the con�rmation status, the blame premises for the message hold. That is, 8l 2H
l . P � blame l for b satisfies khindex(m)i and 8l 2 flid . P � blame l for identified(m)
We can now set up the following derivation.

m̂ = P `CS m with {se-blame:=Hl ; id-conf:=c; id-blame:=flid } to b

k = C (b) type(m) == req

{identified(m) 7! c} � C 8l 2Hl . P � blame l for b satisfies khindex(m)i
8l 2 flid . P � blame l for identified(m)

P

0 `CS m̂ to b P

0 `CS mon

l(� 0, Pa)
names(m̂ to b) \ names(monl(� 0, Pa)) = ;

labels(m̂ to b) \ labels(monl(� 0, Pa)) = ;
P

0 `CS P[monl(� 0, Pa)] || m̂ to b

• Case Adapter Receive Enhanced
From the de�nition of the rule, we have

(k,X) = contract_for� (b,m̂) �

0,m = lower� (k,X,m)

P[monl(� , Pa) || m̂ to a]! P[monl(� 0, Pa ||m to a)]

where P = P[monl(� , Pa) || m̂ to a] and P

0 = P[monl(� 0, Pa ||m to a)]. Since the enhanced
message is well-formed, we can use Theorems A.3 and A.4 to get that the new adapter state
�

0 is well-formed. Additionally, all unenhanced messages are well-formed, so we can use the
parallel composition rule to get

P

0 `CS m to a P

0 `CS mon

l(� 0, Pa)
names(monl(� 0, Pa)) \ names(m to a) = ; labels(monl(� 0, Pa)) \ labels(m to a) = ;

P

0 `CS P[monl(� 0, Pa) ||m to a]

• Case Adapter Send Unenhanced
From the de�nition of the rule, we have

(k, 7) = contract_for� (b,m)
�

0,m̂ = lift� (7,k,m, l) �

00,m = lower� 0 (k, 7,m̂)

P[monl(� , Pa ||m to b)]!P[monl(� 00, Pa) ||m to b]

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 36. Publication date: January 2017.

Whip: Higher-Order Contracts for Modern Services 36:7

where P = P[monl(� , Pa ||m to b)] and P

0 = P[monl(� 00, Pa) ||m to b]. We can use The-
orems A.2 to A.4 to get that the new adapter state �

00 is well-formed. Additionally, all
unenhanced messages are well-formed, so we can use the composition rule to get

P

0 `CS m to b P

0 `CS mon

l(� 0, Pa)
names(monl(� 0, Pa)) \ names(m to b) = ; labels(monl(� 0, Pa)) \ labels(m to b) = ;

P

0 `CS P[monl(� 0, Pa) ||m to b]

• Case Adapter Receive Unenhanced
From the de�nition of the rule, we have

(k, c) = contract_for� (a,m)
�

0,m̂ = lift� (7,m, †) �

00,m = lower� 0 (k, 7,m̂)

P[monl(� , Pa) ||m to a]!P[monl(� 00, Pa ||m to a)]

where P = P[monl(� , Pa) ||m to a] and P

0 = P[monl(� 00, Pa ||m to a)]. We can use The-
orems A.2 to A.4 to get that the new adapter state �

00 is well-formed. Additionally, all
unenhanced messages are well-formed, so we can use the composition rule to get

P

0 `CS m to a P

0 `CS mon

l(� 00, Pa)
names(monl(� 00, Pa)) \ names(m to a) = ; labels(monl(� 00, Pa)) \ labels(m to a) = ;

P

0 `CS P[monl(� 00, Pa ||m to a)]

• Case Adapter Bypass Send and Receive
The adapter state is not changed and all unenhanced messages are well-formed so we can
simply use the composition rule to form the new derivation of well-formedness.

With all rules of the reduction relation satisfying preservation of well-formedness, the proof is
complete.

⇤

Correct Blame. If well-formed P1 = P1[monl(�1, Pa1)] and P1 �! P2 and P2=P2[monl(�2, Pa2)] and
errors�2={le} [errors�1 then
(1) if le = Pre(se, le), then
(a) if P1 = P[monl(�1, Pa ||m to b)] and

P2 = P[monl(�2, Pa) ||m0 to b] then le = l
(b) if P1 = P[monl(�1, Pa) ||m to a] and

P2 = P[monl(�2, Pa ||m to a)] then le = †
(2) if le = Post(se,Hl), then 8l 2Hl . P2 � blame l for se .

P����. The �rst case (precondition error) is a direct result of the reduction rules for receiving a
message and the lift metafunction for contract checking. The second case (postcondition error) is
a direct result of well-formedness (speci�cally 8se 7!H

lc 2 blame� 0, l 2Hl . P � blame l for se) and
the lift metafunction for contract checking. ⇤

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 36. Publication date: January 2017.

36:8 Lucas Waye, Christos Dimoulas, and Stephen Chong

B FULL SPECIFICATIONS
B.1 Evernote
1 service UserStore {
2 getNoteStoreUrl(authToken)
3 @where index is « authToken »
4 @identifies NoteStore at « result » with index « authToken »
5

6 getUser(authToken)
7 @where index is « authToken »
8 @requires « length(authToken) > 0 »
9 }
10 service NoteStore {
11 listNotebooks(authToken)
12 @where index is « authToken »
13 @requires « length(authToken) > 0 »
14

15 listLinkedNotebooks(authToken)
16 @where index is « authToken »
17 @foreach notebook in « result » identifies NoteStore at « notebook.noteStoreUrl »
18 with index « authToken + notebook.shareKey »
19 @ensures « for notebook in result: assert(notebook.shareKey != None) »
20

21 getSharedNotebookByAuth(authToken)
22 @where index is « authToken »
23 @identifies NoteStore at receiver with index « result.authToken »
24

25 authenticateToSharedNotebook(shareKey, authToken)
26 @where index is « shareKey + authToken »
27 @identifies NoteStore at receiver with index « result.authenticationToken »
28 @requires « length(shareKey) > 0 »
29

30 findNotes(authToken, filter, o�set, maxNotes)
31 @where index is « authToken »
32 @requires « o�set >= 0 »
33 @ensures « result.totalNotes <= maxNotes and result.totalNotes == length(result.notes) »
34 @ensures «
35 for note in result:
36 try: UUID(note.notebookGuid, version=4)
37 except ValueError: return False
38 »
39 @ensures «
40 for note in result:
41 for resource in note.resources:
42 assert (resource.mime in mimetypes.types_map.values())
43 »
44 }

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 36. Publication date: January 2017.

Whip: Higher-Order Contracts for Modern Services 36:9

B.2 Twi�er
1 from rfc822 import parsedate_tz
2 service Twi�erOAuth {
3 /oauth/access_token(req)
4 @identifies Twi�er at receiver with index
5 « 'oauth:' + parse_querystring(result.content).get('oauth_token') »
6 }
7

8 service Twi�er {
9 /1.1/status/user_timeline.json(request)
10 @where index is « 'oauth:' + request['headers'].get('Authorization') »
11 }
12

13 service Twi�erTweets {
14 /1.1/friends/list.json(request)
15 @where index is « 'u' + request['args'].get('user_id', request['args'].get('screen_name')) »
16 @requires « 'user_id' in request['args'] or 'screen_name' in request['args']»
17 @requires « request['args'].get('count', 0) >= 0 and 'Authorization' in request['headers'] »
18 @ensures « type(result['body']['users']) == list »
19 @foreach f in « result['body']['users'] » identifies Twi�erTweets
20 at « request['headers']['Host'] » with index « "u" + f['id_str'] »
21

22 /1.1/statuses/user_timeline.json(request)
23 @where index is « 'u' + request['args'].get('user_id', request['args'].get('screen_name')) »
24 @requires « 'Authorization' in request['headers'] and \
25 ('user_id' in request['args'] or 'screen_name' in request['args']) »
26 @foreach tweet in « result['body'] » identifies Twi�erTweets at « request['headers']['Host'] »
27 with index « "t" + tweet['id_str'] »
28 @ensures « 'count' not in request['args'] or length(result) <= max(200, request['args']['count']) »
29 @ensures « for tweet in result['body']: assert parsedate_tz(tweet['created_at']) != None »
30

31 /1.1/statuses/retweet/<id>.json(request)
32 @where index is « "t" + request['args']['tweet_id'] »
33 @ensures « 'errors' not in result['body'] »
34 }

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 36. Publication date: January 2017.

36:10 Lucas Waye, Christos Dimoulas, and Stephen Chong

B.3 Chess
1 from chess.pgn import read_game
2

3 service Chess {
4 GetMyGames(username, password)
5 @foreach g in « result » identifies Chess at receiver with index « (g['gameId'], moves(g), False) »
6 @foreach g in « result » identifies Chess at receiver with index « (g['gameId'], moves(g), True) »
7 when « g['drawO�ered'] == True »
8 @ensures «
9 for game in result:
10 try: read_game(game['moves'])
11 except: return False »
12

13 MakeAMove(username, password, gameId, resign, acceptDraw, movecount, myMove,
14 o�erDraw, claimDraw, myMessage)
15 @where index is « (gameId, movecount, acceptDraw) »
16 @ensures « result != "NoDrawWasO�ered" and result != "InvalidGameID" »
17 }

C ADDITIONAL CASE STUDY: AIRLINE RESERVATIONS
The airline reservation open-source case study [McGregor et al. 2012; Wilde et al. 2012] models an
airline reservation system, and was developed to provide researchers and educators with a simple
but complete service-oriented application. With respect to the challenges we discuss in Section
1, it demonstrates that (i) Whip can operate on top of yet another interface abstraction (SOAP
with a WSDL interface); and (ii) Whip can express and enforce contracts between components
implemented in di�erent languages (Python and PHP for client and server respectively).

The text documentation of the case study informally describes the component interfaces, and the
WSDL speci�cation captures some of the interface’s syntactic properties. However, WSDL cannot
express many of the properties in the text documentation. We wrote Whip contracts for some of
these additional properties.
Well-formed passenger information. The documentation states that passengers’ �rst and last
names cannot contain whitespace. This ensures consistent treatment of passenger names by all
services and applies to all services that use passenger data.
With Whip, we are able to ensure that passenger information is well-formed by adding the

following tags for the bookSeat operation to the contract of the airline server (We also add similar
tags for other uses of passenger information.)
bookSeat(bookingRequestNumber, flightId, passenger)
@requires « ' ' not in passenger.firstName »
@requires « ' ' not in passenger.lastName »

We tested the e�ectiveness of this contract by removing the passenger data validity check from
the reference implementation of the bookSeat operation. Similar defensive code that checks this
property appears in multiple places in the case study’s code base. Without Whip and the defensive
code, a client is able to book a �ight with invalid passenger information. With Whip and the
above contract, the violation was reported and the client was blamed. Thus the Whip contract is as
e�ective as defensive code injected in multiple places in the service’s code.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 36. Publication date: January 2017.

