
Privacy Integrated
Data Stream Queries

Lucas Waye

Workshop on Privacy and Security in Programming 2014

Sanitizing Private Data Sets

Sanitizing Private Data Sets

Static Data Set
Private

Sanitizing Private Data Sets

Static Data Set Sanitizer
Differentially Private

Private

Sanitizing Private Data Sets

Static Data Set Sanitizer
Differentially Private Sanitized Output

Private Public

Sanitizing Private Data Sets

Static Data Set Sanitizer
Differentially Private Sanitized Output

Private Public

Sanitizing Private Data Sets

Static Data Set Sanitizer
Differentially Private Sanitized Output

Private Public

• Row database
• Graph
• Bids

Sanitizing Private Data Sets

Static Data Set Sanitizer
Differentially Private Sanitized Output

Private Public

• Row database
• Graph
• Bids

• Query results
• Synthetic data
• Summary Structure

Sanitizing Private Data Sets

Static Data Set Sanitizer
Differentially Private Sanitized Output

Private Public

• Row database
• Graph
• Bids

• Query results
• Synthetic data
• Summary Structure

available to non-privacy-experts

Streaming Data

Streaming Data

time

Streaming Data

time

Streaming Data

time

Streaming Data

time

Streaming Data

time

traditional differentially private mechanisms
do not account for new data (“one-shot”)

streaming sanitizers not accessible to non-privacy-experts

Streaming Data

time

traditional differentially private mechanisms
do not account for new data (“one-shot”)

streaming sanitizers not accessible to non-privacy-experts

this talk — bringing theory to practice
giving non-experts the ability to sanitize private streaming data

Talk Outline
• Background: streaming differential privacy

• Event-Level privacy

• User-Level Privacy

• Our setting

• Streaming PINQ

• Where PINQ falls short

• Streaming PINQ agents by example

• Conclusions and future work

Differentially Private
Streaming Algorithms

time

..

.

time

Streaming Sanitizer

Private
Streaming Input Streaming Output

Public

Differentially Private
Streaming Algorithms

time

..

.

time

..

.

Streaming Sanitizer

Private
Streaming Input Streaming Output

Public

Privacy Guarantees
it varies!

Privacy Guarantees
it varies!

Privacy Guarantees
it varies!

Based on theoretical output behavior:
The output of the sanitizer does not differ much on neighboring input streams.

Privacy Guarantees
it varies!

Based on theoretical output behavior:
The output of the sanitizer does not differ much on neighboring input streams.

Result: hard to notice if a particular individual is present in the data set

Privacy Guarantees
it varies!

Based on theoretical output behavior:
The output of the sanitizer does not differ much on neighboring input streams.

Result: hard to notice if a particular individual is present in the data set

How much does the output differ?

Privacy Guarantees
it varies!

Based on theoretical output behavior:
The output of the sanitizer does not differ much on neighboring input streams.

What is a neighboring input stream?
• event-level privacy
• user-level privacy

Result: hard to notice if a particular individual is present in the data set

How much does the output differ?

Event-Level Privacy*

time

..

.

Original
Event Stream

colors represent different event types

neighbors differ by only one event

* Dwork et al. 2010

Event-Level Privacy*

time

..

.

Original
Event Stream

first event differs

..

.
..
.

..

.

colors represent different event types

neighbors differ by only one event

* Dwork et al. 2010

Event-Level Privacy*

time

..

.

Original
Event Stream

..

.

colors represent different event types

..

.
..
.

..

.

neighbors differ by only one event

first event differs

2nd event differs

3rd event differs

* Dwork et al. 2010

User-Level Privacy*

time

..

.

Original
Event Stream

colors represent different users’ events

neighbors differ by only one user

* Dwork et al 2010

..

.
..
.

..

.

User-Level Privacy*

time

..

.

Original
Event Stream

colors represent different users’ events

neighbors differ by only one user

first user differs

* Dwork et al 2010

User-Level Privacy*

time

..

.

Original
Event Stream

colors represent different users’ events

neighbors differ by only one user

..

.
..
.

..

.

first user differs

2nd user differs

3rd user differs

* Dwork et al 2010

Talk Outline
• Background: streaming differential privacy

• Event-Level privacy

• User-Level Privacy

• Our setting

• Streaming PINQ

• Where PINQ falls short

• Streaming PINQ agents by example

• Conclusions and future work

Our Setting

AnalystData Owner

Private
Streaming Input

Our Setting

AnalystData Owner

useful information

protect privacy

Private
Streaming Input

Our Setting

AnalystData Owner

useful information

protect privacy

Private
Streaming Input

Streaming Sanitizers
with different privacy guarantees

Event-Level Private

Event-Level Private

User-Level Private

Our Setting

AnalystData Owner

useful information

protect privacy

Private
Streaming Input

Streaming Sanitizers
with different privacy guarantees

Event-Level Private

Event-Level Private

User-Level Private

Agent enforces privacy
requirements of data owner

Our Setting

AnalystData Owner

useful information

protect privacy

Private
Streaming Input

Streaming Sanitizers
with different privacy guarantees

Event-Level Private

Event-Level Private

User-Level Private

Agent enforces privacy
requirements of data owner

selects sanitizers to use

Our Setting

AnalystData Owner

useful information

protect privacy

Private
Streaming Input

Streaming Sanitizers
with different privacy guarantees

Event-Level Private

Event-Level Private

User-Level Private

Agent enforces privacy
requirements of data owner

informs agent of
privacy properties

selects sanitizers to use

Our Setting

AnalystData Owner

useful information

protect privacy

Private
Streaming Input

Streaming Sanitizers
with different privacy guarantees

Event-Level Private

Event-Level Private

User-Level Private

Agent enforces privacy
requirements of data owner

Our Setting

AnalystData Owner

useful information

protect privacy

Private
Streaming Input

Streaming Sanitizers
with different privacy guarantees

Event-Level Private

Event-Level Private

User-Level Private

Agent enforces privacy
requirements of data owner

private eventprivate event

public event

Talk Outline
• Background: streaming differential privacy

• Event-Level privacy

• User-Level Privacy

• Our setting

• Streaming PINQ

• Where PINQ falls short

• Streaming PINQ agents by example

• Conclusions and future work

see paper for how other related work falls short

PINQ

var tweets = ReadAllSavedTweets(“saved_tweets.txt");
var agent = new PINQAgentBudet(1.0);
var data = new PINQueryable<Tweet>(tweets, agent);

double tweetsFromNY = data
 .Where(tweet => tweet.Location.State == "NY")
 .NoisyCount(1.0);

Console.WriteLine("Tweets from New York: " + tweetsFromNY);

Privacy Integrated Query*

* McSherry 2009

PINQ

var tweets = ReadAllSavedTweets(“saved_tweets.txt");
var agent = new PINQAgentBudet(1.0);
var data = new PINQueryable<Tweet>(tweets, agent);

double tweetsFromNY = data
 .Where(tweet => tweet.Location.State == "NY")
 .NoisyCount(1.0);

Console.WriteLine("Tweets from New York: " + tweetsFromNY);

Privacy Integrated Query*
Controls how much accuracy analyst has
 (how much privacy is lost)

* McSherry 2009

PINQ

var tweets = ReadAllSavedTweets(“saved_tweets.txt");
var agent = new PINQAgentBudet(1.0);
var data = new PINQueryable<Tweet>(tweets, agent);

double tweetsFromNY = data
 .Where(tweet => tweet.Location.State == "NY")
 .NoisyCount(1.0);

Console.WriteLine("Tweets from New York: " + tweetsFromNY);

Privacy Integrated Query*

Control accuracy of result (use up privacy budget)

Controls how much accuracy analyst has
 (how much privacy is lost)

* McSherry 2009

PINQ: Streaming?

var tweets = ReadAllSavedTweets(“saved_tweets.txt");
var agent = new PINQAgentBudet(1.0);
var data = new PINQueryable<Tweet>(tweets, agent);

double tweetsFromNY = data
 .Where(tweet => tweet.Location.State == "NY")
 .NoisyCount(1.0);

Console.WriteLine("Tweets from New York: " + tweetsFromNY);

PINQ: Streaming?
var tweets = ReadAllSavedTweets(“saved_tweets.txt");
var agent = new PINQAgentBudet(1.0);
var data = new PINQueryable<Tweet>(tweets, agent);

double tweetsFromNY = data
 .Where(tweet => tweet.Location.State == "NY")
 .NoisyCount(1.0);

Console.WriteLine("Tweets from New York: " + tweetsFromNY);

PINQ: Streaming?
var tweets = ReadAllSavedTweets(“saved_tweets.txt");
var agent = new PINQAgentBudet(1.0);
var data = new PINQueryable<Tweet>(tweets, agent);

double tweetsFromNY = data
 .Where(tweet => tweet.Location.State == "NY")
 .NoisyCount(1.0);

Console.WriteLine("Tweets from New York: " + tweetsFromNY);

static data set

PINQ: Streaming?
var tweets = ReadAllSavedTweets(“saved_tweets.txt");
var agent = new PINQAgentBudet(1.0);
var data = new PINQueryable<Tweet>(tweets, agent);

double tweetsFromNY = data
 .Where(tweet => tweet.Location.State == "NY")
 .NoisyCount(1.0);

Console.WriteLine("Tweets from New York: " + tweetsFromNY);

static data set
user-level or event-level?

PINQ: Streaming?
var tweets = ReadAllSavedTweets(“saved_tweets.txt");
var agent = new PINQAgentBudet(1.0);
var data = new PINQueryable<Tweet>(tweets, agent);

double tweetsFromNY = data
 .Where(tweet => tweet.Location.State == "NY")
 .NoisyCount(1.0);

Console.WriteLine("Tweets from New York: " + tweetsFromNY);

static data set
user-level or event-level?

get result immediately

PINQ: Streaming?
var tweets = ReadAllSavedTweets(“saved_tweets.txt");
var agent = new PINQAgentBudet(1.0);
var data = new PINQueryable<Tweet>(tweets, agent);

double tweetsFromNY = data
 .Where(tweet => tweet.Location.State == "NY")
 .NoisyCount(1.0);

Console.WriteLine("Tweets from New York: " + tweetsFromNY);

static data set
user-level or event-level?

get result immediately

Contributions
• Support for streaming events
• New agents that are aware of streaming privacy properties
• Five differentially private streaming algorithm implementations

Streaming PINQ
var tweets = AllTweetsFireHose(); // custom data provider
var agent = new EventLevelPrivacyBudget(1.0); // streaming agent
var data = new StreamingQueryable<Tweet>(tweets, agent);

// returns handle to output stream
double tweetsFromNY = data
 .Where(tweet => tweet.Location.State == "NY")
 .RandomizedResponseCount(1.0);

// callback when output is made by algorithm
tweetsFromNY.OnOutput = (c =>
 Console.WriteLine("Tweets from New York: " + c));

// process 5,000 events
tweetsFromNY.ProcessEvents(5000);

See paper for:
• description of streaming event API
• implemented streaming algorithms

Streaming PINQ
var tweets = AllTweetsFireHose(); // custom data provider
var agent = new EventLevelPrivacyBudget(1.0); // streaming agent
var data = new StreamingQueryable<Tweet>(tweets, agent);

// returns handle to output stream
double tweetsFromNY = data
 .Where(tweet => tweet.Location.State == "NY")
 .RandomizedResponseCount(1.0);

// callback when output is made by algorithm
tweetsFromNY.OnOutput = (c =>
 Console.WriteLine("Tweets from New York: " + c));

// process 5,000 events
tweetsFromNY.ProcessEvents(5000);

See paper for:
• description of streaming event API
• implemented streaming algorithms

new EventLevelPrivacyBudget(1.0);

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

Event-Level Agent
Budget = 2ε

ε privacy

ε privacy

time

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

Event-Level Agent
Budget = 2ε

ε privacy

ε privacy

time

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

Event-Level Agent
Budget = 2ε

ε privacy

ε privacy

time

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

Event-Level Agent
Budget = 2ε

ε privacy

ε privacy

time

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

Event-Level Agent
Budget = 2ε

ε privacy

ε privacy

time

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

Event-Level Agent
Budget = 2ε

ε privacy

ε privacy

time

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

Event-Level Agent
Budget = 2ε

ε privacy

ε privacy

User-Level Privacy implies Event-Level Privacy

time

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent
Budget = 2ε

ε privacy

ε privacy

time

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent
Budget = 2ε

ε privacy

ε privacy

time

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent
Budget = 2ε

ε privacy

ε privacy

time

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent
Budget = 2ε

ε privacy

ε privacy
privacy of stream permanently affected

event-level treated as a one-time use of user-level algorithm

time

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent
Budget = 2ε

ε privacy

ε privacy
privacy of stream permanently affected

event-level treated as a one-time use of user-level algorithm

Budget Exhausted
time

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent
Budget = 2ε

ε privacy

ε privacy
privacy of stream permanently affected

event-level treated as a one-time use of user-level algorithm

Budget Exhausted
time

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent
Budget = 2ε

ε privacy

ε privacy
privacy of stream permanently affected

event-level treated as a one-time use of user-level algorithm

Budget Exhausted
time

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent
Budget = 2ε

ε privacy

ε privacy
privacy of stream permanently affected

event-level treated as a one-time use of user-level algorithm

Budget Exhausted
time

Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent
Budget = 2ε

ε privacy

ε privacy
privacy of stream permanently affected

event-level treated as a one-time use of user-level algorithm

Budget Exhausted
time

see paper for full description of streaming agent API

Future Work
• Including timing of events in the model

• Stock trade made after hours ! institutional trader
• Time boxing? Incorporate research on timing channels?

• Large trusted code base
• Programming framework provides no help in assuring new streaming

algorithm implementations are safe
• C# seems to be the wrong choice of language: many side-channels
• DSL for streaming queries — what are the right primitives?

Questions?

Thanks!

