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traditional differentially private mechanisms 
do not account for new data (“one-shot”) 

streaming sanitizers not accessible to non-privacy-experts 

this talk — bringing theory to practice
giving non-experts the ability to sanitize private streaming data 



Talk Outline
• Background: streaming differential privacy 

• Event-Level privacy 

• User-Level Privacy 

• Our setting 

• Streaming PINQ 

• Where PINQ falls short 

• Streaming PINQ agents by example 

• Conclusions and future work
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Privacy Guarantees
it varies!

Based on theoretical output behavior:
The output of the sanitizer does not differ much on neighboring input streams.

What is a neighboring input stream? 
• event-level privacy 
• user-level privacy

Result: hard to notice if a particular individual is present in the data set

How much does the output differ?
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Talk Outline
• Background: streaming differential privacy 

• Event-Level privacy 

• User-Level Privacy 

• Our setting 

• Streaming PINQ 

• Where PINQ falls short 

• Streaming PINQ agents by example 

• Conclusions and future work

see paper for how other related work falls short
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var data = new PINQueryable<Tweet>(tweets, agent); 

double tweetsFromNY = data 
 .Where(tweet => tweet.Location.State == "NY") 
 .NoisyCount(1.0); 

Console.WriteLine("Tweets from New York: " + tweetsFromNY);

Privacy Integrated Query*

Control accuracy of result (use up privacy budget)

Controls how much accuracy analyst has
   (how much privacy is lost)

* McSherry 2009
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PINQ: Streaming?
var tweets = ReadAllSavedTweets(“saved_tweets.txt"); 
var agent = new PINQAgentBudet(1.0); 
var data = new PINQueryable<Tweet>(tweets, agent); 

double tweetsFromNY = data 
 .Where(tweet => tweet.Location.State == "NY") 
 .NoisyCount(1.0); 

Console.WriteLine("Tweets from New York: " + tweetsFromNY);

static data set
user-level or event-level?

get result immediately

Contributions 
• Support for streaming events  
• New agents that are aware of streaming privacy properties 
• Five differentially private streaming algorithm implementations
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// returns handle to output stream 
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// process 5,000 events 
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var tweets = AllTweetsFireHose();  // custom data provider 
var agent = new EventLevelPrivacyBudget(1.0);  // streaming agent 
var data = new StreamingQueryable<Tweet>(tweets, agent); 

// returns handle to output stream 
double tweetsFromNY = data 
 .Where(tweet => tweet.Location.State == "NY") 
 .RandomizedResponseCount(1.0); 

// callback when output is made by algorithm 
tweetsFromNY.OnOutput = (c =>  
 Console.WriteLine("Tweets from New York: " + c)); 

// process 5,000 events 
tweetsFromNY.ProcessEvents(5000);

See paper for: 
• description of streaming event API 
• implemented streaming algorithms

new EventLevelPrivacyBudget(1.0); 



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

Event-Level Agent 
Budget = 2ε

ε privacy

ε privacy

time



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

Event-Level Agent 
Budget = 2ε

ε privacy

ε privacy

time



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

Event-Level Agent 
Budget = 2ε

ε privacy

ε privacy

time



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

Event-Level Agent 
Budget = 2ε

ε privacy

ε privacy

time



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

Event-Level Agent 
Budget = 2ε

ε privacy

ε privacy

time



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

Event-Level Agent 
Budget = 2ε

ε privacy

ε privacy

time



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

Event-Level Agent 
Budget = 2ε

ε privacy

ε privacy

User-Level Privacy implies Event-Level Privacy

time



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent 
Budget = 2ε

ε privacy

ε privacy

time



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent 
Budget = 2ε

ε privacy

ε privacy

time



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent 
Budget = 2ε

ε privacy

ε privacy

time



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent 
Budget = 2ε

ε privacy

ε privacy
privacy of stream permanently affected 

event-level treated as a one-time use of user-level algorithm

time



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent 
Budget = 2ε

ε privacy

ε privacy
privacy of stream permanently affected 

event-level treated as a one-time use of user-level algorithm

Budget Exhausted
time



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent 
Budget = 2ε

ε privacy

ε privacy
privacy of stream permanently affected 

event-level treated as a one-time use of user-level algorithm

Budget Exhausted
time



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent 
Budget = 2ε

ε privacy

ε privacy
privacy of stream permanently affected 

event-level treated as a one-time use of user-level algorithm

Budget Exhausted
time



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent 
Budget = 2ε

ε privacy

ε privacy
privacy of stream permanently affected 

event-level treated as a one-time use of user-level algorithm

Budget Exhausted
time



Mixing Privacy Guarantees

User-Level Private

Event-Level Private

User-Level Agent 
Budget = 2ε

ε privacy

ε privacy
privacy of stream permanently affected 

event-level treated as a one-time use of user-level algorithm

Budget Exhausted
time

see paper for full description of streaming agent API 



Future Work
• Including timing of events in the model

• Stock trade made after hours ! institutional trader
• Time boxing? Incorporate research on timing channels?

• Large trusted code base
• Programming framework provides no help in assuring new streaming 

algorithm implementations are safe
• C# seems to be the wrong choice of language: many side-channels
• DSL for streaming queries — what are the right primitives?



Questions? 

Thanks!


